Exploring semantic web technologies for product family modeling

Jyotirmaya Nanda, Henri J. Thevenot, Timothy W. Simpson, Soundar R.T. Kumara, Steven B. Shooter

Research output: Contribution to conferencePaper

21 Scopus citations

Abstract

By sharing product design information across a family of products, companies can increase the flexibility and responsiveness of their product realization process while shortening lead-times and reducing cost. This paper describes a preliminary attempt at using semantic web paradigm, especially the Web Ontology Language (OWL), for product family information management. An overview of the ongoing work with Semantic Web is also presented. Formal product representation using OWL can not only store the structure of the product family but also help in capturing the evolution of different components of the product family. As an illustration, a group of single-use cameras, containing several products from the Kodak single-use camera family, is represented in OWL format. The methodology of ontology development that can support product family design is discussed in detail. Product family design representation using OWL promotes better learning across products and reduced development time, system complexity, and product design lead-time.

Original languageEnglish (US)
Pages309-318
Number of pages10
DOIs
StatePublished - 2004
Event2004 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference - Salt Lake City, UT, United States
Duration: Sep 28 2004Oct 2 2004

Other

Other2004 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
CountryUnited States
CitySalt Lake City, UT
Period9/28/0410/2/04

All Science Journal Classification (ASJC) codes

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint Dive into the research topics of 'Exploring semantic web technologies for product family modeling'. Together they form a unique fingerprint.

Cite this