TY - JOUR
T1 - Exponential map and L ∞ algebra associated to a Lie pair
AU - Laurent-Gengoux, Camille
AU - Stiénon, Mathieu
AU - Xu, Ping
N1 - Funding Information:
Research partially supported by the National Science Foundation [DMS-1101827] and the National Security Agency [H98230-12-1-0234]. E-mail addresses: camille.laurent-gengoux@univ-lorraine.fr (C. Laurent-Gengoux), stienon@math.psu.edu (M. Stiénon), ping@math.psu.edu (P. Xu).
PY - 2012/9
Y1 - 2012/9
N2 - In this Note, we unveil homotopy-rich algebraic structures generated by the Atiyah classes relative to a Lie pair (L, A) of algebroids. In particular, we prove that the quotient L/. A of such a pair admits an essentially canonical homotopy module structure over the Lie algebroid A, which we call Kapranov module.
AB - In this Note, we unveil homotopy-rich algebraic structures generated by the Atiyah classes relative to a Lie pair (L, A) of algebroids. In particular, we prove that the quotient L/. A of such a pair admits an essentially canonical homotopy module structure over the Lie algebroid A, which we call Kapranov module.
UR - http://www.scopus.com/inward/record.url?scp=84868157270&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84868157270&partnerID=8YFLogxK
U2 - 10.1016/j.crma.2012.08.009
DO - 10.1016/j.crma.2012.08.009
M3 - Article
AN - SCOPUS:84868157270
VL - 350
SP - 817
EP - 821
JO - Comptes Rendus Mathematique
JF - Comptes Rendus Mathematique
SN - 1631-073X
IS - 17-18
ER -