Fabrication and strength-based design of a meso forceps

M. E. Aguirre, G. Hayes, C. Yuangyai, M. Frecker, J. Adair, N. Antolino

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A novel fabrication process and design optimization method for a mesoscale forceps is presented. This work is part of a larger research effort to design and fabricate nanoparticulate enabled surgical instruments using an iterative fabrication-design technique. The current paper focuses on the fabrication of thick (∼hundreds of microns) two dimensional parts with large aspect ratios (length/width > 20). The paper also describes an optimization method that accounts for manufacturing requirements and material strength. The process begins with the fabrication of an array of molds on refractory substrates using a modified UV lithography technique. In parallel, engineered ceramic nanocolloidal slurries are prepared for gel-casting into the molds. Mold infiltration takes place via a squeegee technique adapted from screen printing with excess slurry removed using an ethanol bath. Finally, the photoresist molds are removed via pyrolysis, and ceramic parts sintered to full density. Employing this manufacturing technique for the compliant micro forceps design is advantageous because a large number of parts can be produced with large aspect ratios, sharp edges (∼ 1 μm), and a resolution of 2 μm. An optimization algorithm, using ANSYS optimization module, is formulated to determine the effect of dimensional parameters and material strength on the optimal design and predicted performance of the compliant meso forceps. Three ultimate strength values are separately implemented as a stress constraint in our optimization problem. Results conclude that our manufacturing process is capable of producing meso scale forceps considering the anticipated ultimate strength at this scale.

Original languageEnglish (US)
Title of host publicationASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2009
Pages325-333
Number of pages9
EditionPARTS A AND B
DOIs
StatePublished - Dec 1 2009
EventASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2009 - San Diego, CA, United States
Duration: Aug 30 2009Sep 2 2009

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
NumberPARTS A AND B
Volume7

Other

OtherASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2009
CountryUnited States
CitySan Diego, CA
Period8/30/099/2/09

All Science Journal Classification (ASJC) codes

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint Dive into the research topics of 'Fabrication and strength-based design of a meso forceps'. Together they form a unique fingerprint.

  • Cite this

    Aguirre, M. E., Hayes, G., Yuangyai, C., Frecker, M., Adair, J., & Antolino, N. (2009). Fabrication and strength-based design of a meso forceps. In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2009 (PARTS A AND B ed., pp. 325-333). (Proceedings of the ASME Design Engineering Technical Conference; Vol. 7, No. PARTS A AND B). https://doi.org/10.1115/DETC2009-87557