Family level variation in Wolbachia-mediated dengue virus blocking in Aedes aegypti

Gerard Terradas, Scott L. Allen, Stephen F. Chenoweth, Elizabeth A. McGraw

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Background: The mosquito vector Aedes aegypti is responsible for transmitting a range of arboviruses including dengue (DENV) and Zika (ZIKV). The global reach of these viruses is increasing due to an expansion of the mosquito's geographic range and increasing urbanization and human travel. Vector control remains the primary means for limiting these diseases. Wolbachia pipientis is an endosymbiotic bacterium of insects that has the ability to block the replication of pathogens, including flaviviruses such as DENV or ZIKV, inside the body of the vector. A strain of Wolbachia called wMel is currently being released into wild mosquito populations to test its potential to limit virus transmission to humans. The mechanism that underpins the virus blocking effect, however, remains elusive. Methods: We used a modified full-sib breeding design in conjunction with vector competence assays in wildtype and wMel-infected Aedes aegypti collected from the field. All individuals were injected with DENV-2 intrathoracically at 5-6 days of age. Tissues were dissected 7 days post-infection to allow quantification of DENV and Wolbachia loads. Results: We show the first evidence of family level variation in Wolbachia-mediated blocking in mosquitoes. This variation may stem from either genetic contributions from the mosquito and Wolbachia genomes or environmental influences on Wolbachia. In these families, we also tested for correlations between strength of blocking and expression level for several insect immunity genes with possible roles in blocking, identifying two genes of interest (AGO2 and SCP-2). Conclusions: In this study we show variation in Wolbachia-mediated DENV blocking in Aedes aegypti that may arise from genetic contributions and environmental influences on the mosquito-Wolbachia association. This suggests that Wolbachia-mediated blocking may have the ability to evolve through time or be expressed differentially across environments. The long-term efficacy of Wolbachia in the field will be dependent on the stability of blocking. Understanding the mechanism of blocking will be necessary for successful development of strategies that counter the emergence of evolved resistance or variation in its expression under diverse field conditions.

Original languageEnglish (US)
Article number622
JournalParasites and Vectors
Volume10
Issue number1
DOIs
StatePublished - Dec 28 2017

Fingerprint

Wolbachia
Dengue Virus
Aedes
Culicidae
Aptitude
Viruses
Insect Genes
Arboviruses
Flavivirus
Urbanization
Dengue
Mental Competency
Breeding
Insects
Immunity
Genome

All Science Journal Classification (ASJC) codes

  • Parasitology
  • Infectious Diseases

Cite this

Terradas, Gerard ; Allen, Scott L. ; Chenoweth, Stephen F. ; McGraw, Elizabeth A. / Family level variation in Wolbachia-mediated dengue virus blocking in Aedes aegypti. In: Parasites and Vectors. 2017 ; Vol. 10, No. 1.
@article{d94dcb2cf33d4b08b9ed84e0fa42a2e8,
title = "Family level variation in Wolbachia-mediated dengue virus blocking in Aedes aegypti",
abstract = "Background: The mosquito vector Aedes aegypti is responsible for transmitting a range of arboviruses including dengue (DENV) and Zika (ZIKV). The global reach of these viruses is increasing due to an expansion of the mosquito's geographic range and increasing urbanization and human travel. Vector control remains the primary means for limiting these diseases. Wolbachia pipientis is an endosymbiotic bacterium of insects that has the ability to block the replication of pathogens, including flaviviruses such as DENV or ZIKV, inside the body of the vector. A strain of Wolbachia called wMel is currently being released into wild mosquito populations to test its potential to limit virus transmission to humans. The mechanism that underpins the virus blocking effect, however, remains elusive. Methods: We used a modified full-sib breeding design in conjunction with vector competence assays in wildtype and wMel-infected Aedes aegypti collected from the field. All individuals were injected with DENV-2 intrathoracically at 5-6 days of age. Tissues were dissected 7 days post-infection to allow quantification of DENV and Wolbachia loads. Results: We show the first evidence of family level variation in Wolbachia-mediated blocking in mosquitoes. This variation may stem from either genetic contributions from the mosquito and Wolbachia genomes or environmental influences on Wolbachia. In these families, we also tested for correlations between strength of blocking and expression level for several insect immunity genes with possible roles in blocking, identifying two genes of interest (AGO2 and SCP-2). Conclusions: In this study we show variation in Wolbachia-mediated DENV blocking in Aedes aegypti that may arise from genetic contributions and environmental influences on the mosquito-Wolbachia association. This suggests that Wolbachia-mediated blocking may have the ability to evolve through time or be expressed differentially across environments. The long-term efficacy of Wolbachia in the field will be dependent on the stability of blocking. Understanding the mechanism of blocking will be necessary for successful development of strategies that counter the emergence of evolved resistance or variation in its expression under diverse field conditions.",
author = "Gerard Terradas and Allen, {Scott L.} and Chenoweth, {Stephen F.} and McGraw, {Elizabeth A.}",
year = "2017",
month = "12",
day = "28",
doi = "10.1186/s13071-017-2589-3",
language = "English (US)",
volume = "10",
journal = "Parasites and Vectors",
issn = "1756-3305",
publisher = "BioMed Central",
number = "1",

}

Family level variation in Wolbachia-mediated dengue virus blocking in Aedes aegypti. / Terradas, Gerard; Allen, Scott L.; Chenoweth, Stephen F.; McGraw, Elizabeth A.

In: Parasites and Vectors, Vol. 10, No. 1, 622, 28.12.2017.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Family level variation in Wolbachia-mediated dengue virus blocking in Aedes aegypti

AU - Terradas, Gerard

AU - Allen, Scott L.

AU - Chenoweth, Stephen F.

AU - McGraw, Elizabeth A.

PY - 2017/12/28

Y1 - 2017/12/28

N2 - Background: The mosquito vector Aedes aegypti is responsible for transmitting a range of arboviruses including dengue (DENV) and Zika (ZIKV). The global reach of these viruses is increasing due to an expansion of the mosquito's geographic range and increasing urbanization and human travel. Vector control remains the primary means for limiting these diseases. Wolbachia pipientis is an endosymbiotic bacterium of insects that has the ability to block the replication of pathogens, including flaviviruses such as DENV or ZIKV, inside the body of the vector. A strain of Wolbachia called wMel is currently being released into wild mosquito populations to test its potential to limit virus transmission to humans. The mechanism that underpins the virus blocking effect, however, remains elusive. Methods: We used a modified full-sib breeding design in conjunction with vector competence assays in wildtype and wMel-infected Aedes aegypti collected from the field. All individuals were injected with DENV-2 intrathoracically at 5-6 days of age. Tissues were dissected 7 days post-infection to allow quantification of DENV and Wolbachia loads. Results: We show the first evidence of family level variation in Wolbachia-mediated blocking in mosquitoes. This variation may stem from either genetic contributions from the mosquito and Wolbachia genomes or environmental influences on Wolbachia. In these families, we also tested for correlations between strength of blocking and expression level for several insect immunity genes with possible roles in blocking, identifying two genes of interest (AGO2 and SCP-2). Conclusions: In this study we show variation in Wolbachia-mediated DENV blocking in Aedes aegypti that may arise from genetic contributions and environmental influences on the mosquito-Wolbachia association. This suggests that Wolbachia-mediated blocking may have the ability to evolve through time or be expressed differentially across environments. The long-term efficacy of Wolbachia in the field will be dependent on the stability of blocking. Understanding the mechanism of blocking will be necessary for successful development of strategies that counter the emergence of evolved resistance or variation in its expression under diverse field conditions.

AB - Background: The mosquito vector Aedes aegypti is responsible for transmitting a range of arboviruses including dengue (DENV) and Zika (ZIKV). The global reach of these viruses is increasing due to an expansion of the mosquito's geographic range and increasing urbanization and human travel. Vector control remains the primary means for limiting these diseases. Wolbachia pipientis is an endosymbiotic bacterium of insects that has the ability to block the replication of pathogens, including flaviviruses such as DENV or ZIKV, inside the body of the vector. A strain of Wolbachia called wMel is currently being released into wild mosquito populations to test its potential to limit virus transmission to humans. The mechanism that underpins the virus blocking effect, however, remains elusive. Methods: We used a modified full-sib breeding design in conjunction with vector competence assays in wildtype and wMel-infected Aedes aegypti collected from the field. All individuals were injected with DENV-2 intrathoracically at 5-6 days of age. Tissues were dissected 7 days post-infection to allow quantification of DENV and Wolbachia loads. Results: We show the first evidence of family level variation in Wolbachia-mediated blocking in mosquitoes. This variation may stem from either genetic contributions from the mosquito and Wolbachia genomes or environmental influences on Wolbachia. In these families, we also tested for correlations between strength of blocking and expression level for several insect immunity genes with possible roles in blocking, identifying two genes of interest (AGO2 and SCP-2). Conclusions: In this study we show variation in Wolbachia-mediated DENV blocking in Aedes aegypti that may arise from genetic contributions and environmental influences on the mosquito-Wolbachia association. This suggests that Wolbachia-mediated blocking may have the ability to evolve through time or be expressed differentially across environments. The long-term efficacy of Wolbachia in the field will be dependent on the stability of blocking. Understanding the mechanism of blocking will be necessary for successful development of strategies that counter the emergence of evolved resistance or variation in its expression under diverse field conditions.

UR - http://www.scopus.com/inward/record.url?scp=85039430895&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85039430895&partnerID=8YFLogxK

U2 - 10.1186/s13071-017-2589-3

DO - 10.1186/s13071-017-2589-3

M3 - Article

C2 - 29282144

AN - SCOPUS:85039430895

VL - 10

JO - Parasites and Vectors

JF - Parasites and Vectors

SN - 1756-3305

IS - 1

M1 - 622

ER -