Favoring complexity: A mixed methods exploration of factors that influence concept selection in design for additive manufacturing

Rohan Prabhu, Rainmar L. Leguarda, Scarlett R. Miller, Timothy W. Simpson, Nicholas A. Meisel

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The capabilities of additive manufacturing (AM) open up designers' solution space and enable them to build designs previously impossible through traditional manufacturing. To leverage AM, designers must not only generate creative ideas, but also propagate these ideas without discarding them in the early design stages. This emphasis on selecting creative ideas is particularly important in design for AM (DfAM), as ideas perceived as infeasible through the traditional design for manufacturing lens could now be feasible with AM. Several studies have discussed the role of DfAM in encouraging creative idea generation; however, there is a need to understand concept selection in DfAM. In this paper, we investigated the effect of two variations in DfAM education: 1) restrictive DfAM and 2) dual DfAM (opportunistic and restrictive) on students' concept selection process. Specifically, we compared the creativity of the concepts generated by the students to the creativity of the concepts selected by them. Further, we performed qualitative analyses to explore the rationale provided by the students in making these design decisions. From the results, we see that teams from both educational groups select ideas of greater usefulness; however, only teams from the restrictive DfAM group select ideas of higher uniqueness and overall creativity. Further, we see that introducing students to opportunistic DfAM increases their emphasis on the complexity of designs when evaluating and selecting them. These results highlight the need for DfAM education to encourage AM designers to not just generate but also select creative ideas.

Original languageEnglish (US)
Title of host publication46th Design Automation Conference (DAC)
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791884003
DOIs
StatePublished - 2020
EventASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2020 - Virtual, Online
Duration: Aug 17 2020Aug 19 2020

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume11A-2020

Conference

ConferenceASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2020
CityVirtual, Online
Period8/17/208/19/20

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modeling and Simulation

Fingerprint Dive into the research topics of 'Favoring complexity: A mixed methods exploration of factors that influence concept selection in design for additive manufacturing'. Together they form a unique fingerprint.

Cite this