Fibroblast growth factor receptor-1 signaling induces osteopontin expression and vascular smooth muscle cell-dependent adventitial fibroblast migration in vitro

Guohong Li, Suzanne Oparil, Stacey S. Kelpke, Yiu Fai Chen, John A. Thompson

Research output: Contribution to journalArticlepeer-review

48 Scopus citations

Abstract

Background - Increased expression of osteopontin (OPN), fibroblast growth factors (FGFs), and their type-1 receptor (FGFR-1) is associated with neointima formation and atherosclerosis. This study tested the hypothesis that ligand activation of FGFR-1 stimulates OPN expression in rat aortic smooth muscle cells (RASMCs), explored the signaling pathway involved, and assessed the functional consequences of activating this pathway on adventitial fibroblast (AF) migration in vitro. Methods and Results - Exogenous FGF-1 stimulated expression of OPN mRNA and protein in RASMCs in vitro in a dose and time-dependent manner. OPN mRNA induction by FGF-1 was completely inhibited by either actinomycin D or cycloheximide, selective inhibitors of RNA polymerase and protein synthesis, respectively. OPN mRNA induction by FGF-1 was attenuated by PD 166866, a highly selective and potent FGFR-1 tyrosine kinase inhibitor. Addition of either PP2 or PD98059, specific inhibitors of Src and mitogen-activated extracellular signal-regulated kinase (MEK)/mitogenactivated protein (MAP) kinases, respectively, attenuated FGF-1-stimulated OPN mRNA expression. FGF-1 treatment of RASMCs enhanced RASMC-conditioned medium-stimulated AF migration; this effect was inhibited by pretreatment of RASMCs with either PD166866 or PP2. Immunodepletion of OPN from RASMC-conditioned medium inhibited both basal and FGF-1-stimulated AF migration. Conclusions - This in vitro study provided a first indication that ligand-activated FGFR-1 plays a significant role in upregulation of OPN expression at the transcriptional level via signaling to Src/MEK/MAP kinases in RASMCs and that this pathway is functionally significant in mediating AF migration via stimulation of OPN expression.

Original languageEnglish (US)
Pages (from-to)854-859
Number of pages6
JournalCirculation
Volume106
Issue number7
DOIs
StatePublished - Aug 13 2002

All Science Journal Classification (ASJC) codes

  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Fingerprint Dive into the research topics of 'Fibroblast growth factor receptor-1 signaling induces osteopontin expression and vascular smooth muscle cell-dependent adventitial fibroblast migration in vitro'. Together they form a unique fingerprint.

Cite this