First-principles DFT insights into the adsorption of hydrazine on bimetallic β1-NiZn catalyst: Implications for direct hydrazine fuel cells

Russell W. Cross, Sachin R. Rondiya, Nelson Y. Dzade

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

We present a systematic first-principles density functional theory study with dispersion corrections (DFT-D3) of hydrazine adsorption on the experimentally observed (1 1 1), (1 1 0) and (1 0 0) surfaces of the binary β1-NiZn alloy. A direct comparison has been drawn between the bimetallic and monometallic Ni and Zn counterparts to understand the synergistic effect of alloy formation. The hydrazine adsorption mechanism has been characterised through adsorption energies, Bader charges, the d-band centre model, and the coordination number of the active site - which is found to dictate the strength of the adsorbate–surface interaction. The bimetallic β1-NiZn nanocatalyst is found to exhibit higher activity towards adsorption and activation of hydrazine compared to the monometallic Ni and Zn counterparts. The Ni-sites of the bimetallic NiZn surfaces are found to be generally more reactive than Zn sites, which is suggested to be due to the higher d-band centre of −0.13 eV (closer to the Fermi level), forming higher energy anti-bonding states through Ni[sbnd]N interactions. The observed synergistic effects derived from surface composition and electronic structure modification from Ni and Zn alloying should provide new possibilities for the rational design and development of low-cost bimetallic Ni-Zn alloy catalysts for direct hydrazine fuel cell (DHFC) applications.

Original languageEnglish (US)
Article number147648
JournalApplied Surface Science
Volume536
DOIs
StatePublished - Jan 15 2021

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Condensed Matter Physics
  • Physics and Astronomy(all)
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films

Cite this