Flows and parity subgraphs of graphs with large odd-edge-connectivity

Jinlong Shu, Cun Quan Zhang, Taoye Zhang

Research output: Contribution to journalArticle

3 Scopus citations

Abstract

The odd-edge-connectivity of a graph G is the size of the smallest odd edge cut of G. Tutte conjectured that every odd-5-edge-connected graph admits a nowhere-zero 3-flow. As a weak version of this famous conjecture, Jaeger conjectured that there is an integer k such that every k-edge-connected graph admits a nowhere-zero 3-flow. Jaeger [F. Jaeger, Flows and generalized coloring theorems in graphs, J. Combin. Theory Ser. B 26 (1979) 205-216] proved that every 4-edge-connected graph admits a nowhere-zero 4-flow. Galluccio and Goddyn [A. Galluccio, L.A. Goddyn, The circular flow number of a 6-edge-connected graph is less than four, Combinatorica 22 (2002) 455-459] proved that the flow index of every 6-edge-connected graph is strictly less than 4. This result is further strengthened in this paper that the flow index of every odd-7-edge-connected graph is strictly less than 4. The second main result in this paper solves an open problem that every odd-(2k+1)-edge-connected graph contains k edge-disjoint parity subgraphs. The third main theorem of this paper proves that if the odd-edge-connectivity of a graph G is at least 4⌈log 2|V(G)|⌉+1, then G admits a nowhere-zero 3-flow. This result is a partial result to the weak 3-flow conjecture by Jaeger and improves an earlier result by Lai et al. The fourth main result of this paper proves that every odd-(4t+1)-edge-connected graph G has a circular (2t+1) even subgraph double cover. This result generalizes an earlier result of Jaeger.

Original languageEnglish (US)
Pages (from-to)839-851
Number of pages13
JournalJournal of Combinatorial Theory. Series B
Volume102
Issue number4
DOIs
Publication statusPublished - Jul 1 2012

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Discrete Mathematics and Combinatorics
  • Computational Theory and Mathematics

Cite this