Abstract
Targeted irradiation of nanostructures by a finely focused ion beam provides routes to improved control of material modification and understanding of the physics of interactions between ion beams and nanomaterials. Here, we studied radiation damage in crystalline diamond and silicon nanostructures using a focused helium ion beam, with the former exhibiting extremely long-range ion propagation and large plastic deformation in a process visibly analogous to blow forming. We report the dependence of damage morphology on material, geometry, and irradiation conditions (ion dose, ion energy, ion species, and location). We anticipate that our method and findings will not only improve the understanding of radiation damage in isolated nanostructures, but will also support the design of new engineering materials and devices for current and future applications in nanotechnology.
Original language | English (US) |
---|---|
Article number | 045302 |
Journal | Nanotechnology |
Volume | 31 |
Issue number | 4 |
DOIs | |
State | Published - 2020 |
All Science Journal Classification (ASJC) codes
- Bioengineering
- Chemistry(all)
- Materials Science(all)
- Mechanics of Materials
- Mechanical Engineering
- Electrical and Electronic Engineering
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Focused-helium-ion-beam blow forming of nanostructures: Radiation damage and nanofabrication'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Focused-helium-ion-beam blow forming of nanostructures : Radiation damage and nanofabrication. / Kim, Chung Soo; Hobbs, Richard G.; Agarwal, Akshay et al.
In: Nanotechnology, Vol. 31, No. 4, 045302, 2020.Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Focused-helium-ion-beam blow forming of nanostructures
T2 - Radiation damage and nanofabrication
AU - Kim, Chung Soo
AU - Hobbs, Richard G.
AU - Agarwal, Akshay
AU - Yang, Yang
AU - Manfrinato, Vitor R.
AU - Short, Michael P.
AU - Li, Ju
AU - Berggren, Karl K.
N1 - Funding Information: Chung-Soo Kim Richard G Hobbs Akshay Agarwal Yang Yang Vitor R Manfrinato Michael P Short Ju Li Karl K Berggren Chung-Soo Kim Richard G Hobbs Akshay Agarwal Yang Yang Vitor R Manfrinato Michael P Short Ju Li Karl K Berggren Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States of America School of Chemistry, Advanced Materials and Bioengineering Research (AMBER) Centre and Centre for Research in Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin, Ireland Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States of America Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States of America Authors to whom any correspondence should be addressed. Chung-Soo Kim, Richard G Hobbs, Akshay Agarwal, Yang Yang, Vitor R Manfrinato, Michael P Short, Ju Li and Karl K Berggren 2020-01-17 2019-10-25 09:08:58 cgi/release: Article released cgi/mmedia: Updated ToC/abstract link bin/incoming: New from .zip Gordon and Betty Moore Foundation https://doi.org/10.13039/100000936 Basic Energy Sciences https://doi.org/10.13039/100006151 DE-SC001088 National Research Foundation of Korea https://doi.org/10.13039/501100003725 2013R1A6A3A03065200 Nuclear Energy University Programs https://doi.org/10.13039/100006999 DE-NE0008827 Division of Materials Research https://doi.org/10.13039/100000078 DMR-1419807 Royal Society https://doi.org/10.13039/501100000288 Science Foundation Ireland https://doi.org/10.13039/501100001602 yes Targeted irradiation of nanostructures by a finely focused ion beam provides routes to improved control of material modification and understanding of the physics of interactions between ion beams and nanomaterials. Here, we studied radiation damage in crystalline diamond and silicon nanostructures using a focused helium ion beam, with the former exhibiting extremely long-range ion propagation and large plastic deformation in a process visibly analogous to blow forming. We report the dependence of damage morphology on material, geometry, and irradiation conditions (ion dose, ion energy, ion species, and location). We anticipate that our method and findings will not only improve the understanding of radiation damage in isolated nanostructures, but will also support the design of new engineering materials and devices for current and future applications in nanotechnology. � 2019 IOP Publishing Ltd [1] Hedler A, Klaumünzer S L and Wesch W 2004 Nat. Mater. 3 804 10.1038/nmat1241 Hedler A, Klaumünzer S L and Wesch W Nat. Mater. 3 2004 804 [2] Moon M-W, Lee S H, Sun J-Y, Oh K H, Vaziri A and Hutchinson J W 2007 Proc. Natl Acad. Sci. USA 104 1130 10.1073/pnas.0610654104 Moon M-W, Lee S H, Sun J-Y, Oh K H, Vaziri A and Hutchinson J W Proc. Natl Acad. Sci. USA 0027-8424 104 2007 1130 [3] Liontas R, Gu X W, Fu E, Wang Y, Li N, Mara N and Greer J R 2014 Nano Lett. 14 5176 10.1021/nl502074d Liontas R, Gu X W, Fu E, Wang Y, Li N, Mara N and Greer J R Nano Lett. 14 2014 5176 [4] Kumar N, Kumar R, Kumar S and Chakarvarti S K 2016 Radiat. Phys. Chem. 119 44 10.1016/j.radphyschem.2015.09.010 Kumar N, Kumar R, Kumar S and Chakarvarti S K Radiat. Phys. Chem. 0969-806X 119 2016 44 [5] Shang L Y, Zhang D and Liu B Y 2016 Physica E 81 315 10.1016/j.physe.2016.03.042 Shang L Y, Zhang D and Liu B Y Physica 1386-9477 81 E 2016 315 [6] Ronning C et al 2010 Phys. Status Solidi b 247 2329 10.1002/pssb.201046192 Ronning C et al Phys. Status Solidi 0370-1972 247 b 2010 2329 [7] Hoffmann S, Bauer J, Ronning C, Stelzner T, Michler J, Ballif C, Sivakov V and Christiansen S H 2009 Nano Lett. 9 1341 10.1021/nl802977m Hoffmann S, Bauer J, Ronning C, Stelzner T, Michler J, Ballif C, Sivakov V and Christiansen S H Nano Lett. 9 2009 1341 [8] Möller W, Johannes A and Ronning C 2016 Nanotechnology 27 175301 10.1088/0957-4484/27/17/175301 Möller W, Johannes A and Ronning C Nanotechnology 0957-4484 27 17 175301 2016 [9] Willke P, Amani J A, Sinterhauf A, Thakur S, Kotzott T, Druga T, Maiti K, Hofsass H and Wenderoth M 2015 Nano Lett. 15 5110 10.1021/acs.nanolett.5b01280 Willke P, Amani J A, Sinterhauf A, Thakur S, Kotzott T, Druga T, Maiti K, Hofsass H and Wenderoth M Nano Lett. 15 2015 5110 [10] Johannes A, Noack S, Wesch W, Glaser M, Lugstein A and Ronning C 2015 Nano Lett. 15 3800 10.1021/acs.nanolett.5b00431 Johannes A, Noack S, Wesch W, Glaser M, Lugstein A and Ronning C Nano Lett. 15 2015 3800 [11] Arora W J, Sijbrandij S, Stern L, Notte J, Smith H I and Barbastathis G 2007 J. Vac. Sci. Technol. B 25 2184 10.1116/1.2779049 Arora W J, Sijbrandij S, Stern L, Notte J, Smith H I and Barbastathis G J. Vac. Sci. Technol. 0734-211X 25 B 2007 2184 [12] Flatabo R, Agarwal A, Hobbs R, Greve M M, Holst B and Berggren K K 2018 Nanotechnology 29 275301 10.1088/1361-6528/aabe22 Flatabo R, Agarwal A, Hobbs R, Greve M M, Holst B and Berggren K K Nanotechnology 0957-4484 29 27 275301 2018 [13] Guo Q, Landau P, Hosemann P, Wang Y and Greer J R 2013 Small 9 691 10.1002/smll.201201614 Guo Q, Landau P, Hosemann P, Wang Y and Greer J R Small 1442-8504 9 2013 691 [14] Vuuren A J V, Skuratov V A, Uglov V V, Neethling J H and Zlotski S V 2013 J. Nucl. Mater. 442 507 10.1016/j.jnucmat.2013.02.047 Vuuren A J V, Skuratov V A, Uglov V V, Neethling J H and Zlotski S V J. Nucl. Mater. 0022-3115 442 2013 507 [15] Ding M-S, Du J-P, Wan L, Ogata S, Tian L, Ma E, Han W-Z, Li J and Shan Z-W 2016 Nano Lett. 16 4118 10.1021/acs.nanolett.6b00864 Ding M-S, Du J-P, Wan L, Ogata S, Tian L, Ma E, Han W-Z, Li J and Shan Z-W Nano Lett. 16 2016 4118 [16] Jung Y J, Homma Y, Vajtai R, Kobayashi Y, Ogino T and Ajayan P M 2004 Nano Lett. 4 1109 10.1021/nl049550b Jung Y J, Homma Y, Vajtai R, Kobayashi Y, Ogino T and Ajayan P M Nano Lett. 4 2004 1109 [17] Robinson A P, Burnell G, Sahonta S-L and MacManus-Driscoll J 2009 Adv. Eng. Mater. 11 907 10.1002/adem.200900150 Robinson A P, Burnell G, Sahonta S-L and MacManus-Driscoll J Adv. Eng. Mater. 11 2009 907 [18] Economou N P, Notte J A and Thompson W B 2012 Scanning 34 83 10.1002/sca.20239 Economou N P, Notte J A and Thompson W B Scanning 34 2012 83 [19] Winston D et al 2009 J. Vac. Sci. Technol. B 27 2702 10.1116/1.3250204 Winston D et al J. Vac. Sci. Technol. 0734-211X 27 B 2009 2702 [20] Postek M T, Vladar A, Archie C and Ming B 2011 Meas. Sci. Technol. 22 024004 10.1088/0957-0233/22/2/024004 Postek M T, Vladar A, Archie C and Ming B Meas. Sci. Technol. 0957-0233 22 2 024004 2011 [21] Joens M S et al 2013 Sci. Rep. 3 3514 10.1038/srep03514 Joens M S et al Sci. Rep. 3 2013 3514 [22] Scholder O, Jefimovs K, Shorubalko I, Hafner C, Sennhauser U and Bona G-L 2013 Nanotechnology 24 395301 10.1088/0957-4484/24/39/395301 Scholder O, Jefimovs K, Shorubalko I, Hafner C, Sennhauser U and Bona G-L Nanotechnology 0957-4484 24 39 395301 2013 [23] Yang J, Ferranti D C, Stern L, Sanford C A, Huang J, Ren Z, Qin L-C and Hall A R 2011 Nanotechnology 22 285310 10.1088/0957-4484/22/28/285310 Yang J, Ferranti D C, Stern L, Sanford C A, Huang J, Ren Z, Qin L-C and Hall A R Nanotechnology 0957-4484 22 28 285310 2011 [24] Fox D S et al 2015 Nano Lett. 15 5307 10.1021/acs.nanolett.5b01673 Fox D S et al Nano Lett. 15 2015 5307 [25] Gonzalez C M et al 2014 J. Vac. Sci. Technol. B 32 021602 10.1116/1.4868027 Gonzalez C M et al J. Vac. Sci. Technol. 0734-211X 32 B 021602 2014 [26] Wu H, Stern L A, Xia D, Ferranti D, Thompson B, Klein K L, Gonzalez C M and Rack P D 2014 J. Mater. Sci., Mater. Electron. 25 587 10.1007/s10854-013-1522-6 Wu H, Stern L A, Xia D, Ferranti D, Thompson B, Klein K L, Gonzalez C M and Rack P D J. Mater. Sci., Mater. Electron. 0957-4522 25 2014 587 [27] Huang Z, Li W-D, Santori C, Acosta V M, Faraon A, Ishikawa T, Wu W, Winston D, Williams R S and Beausoleil R G 2013 Appl. Phys. Lett. 103 081906 10.1063/1.4819339 Huang Z, Li W-D, Santori C, Acosta V M, Faraon A, Ishikawa T, Wu W, Winston D, Williams R S and Beausoleil R G Appl. Phys. Lett. 103 081906 2013 [28] Cybart S A, Cho E Y, Wong T J, Wehlin B H, Ma M K, Huynh C and Dynes R C 2015 Nat. Nanotechnol. 10 598 10.1038/nnano.2015.76 Cybart S A, Cho E Y, Wong T J, Wehlin B H, Ma M K, Huynh C and Dynes R C Nat. Nanotechnol. 10 2015 598 [29] Stanford M G et al 2016 Sci. Rep. 6 27276 10.1038/srep27276 Stanford M G et al Sci. Rep. 6 2016 27276 [30] Giannuzzi L A, Prenitzer B I and Kempshall B W 2005 Introduction to Focused Ion Beams ed L A Giannuzzi and F A Stevie (Dordrecht: Kluwer Academic Publishers) pp 13–52 10.1007/0-387-23313-X_2 Giannuzzi L A, Prenitzer B I and Kempshall B W ed Giannuzzi L A and Stevie F A Introduction to Focused Ion Beams 2005 13 52 [31] Kashinath A and Demkowicz M J 2011 Modelling Simul. Mater. Sci. Eng. 19 035007 10.1088/0965-0393/19/3/035007 Kashinath A and Demkowicz M J Modelling Simul. Mater. Sci. Eng. 0965-0393 19 3 035007 2011 [32] Livengood R, Tan S, Greenzweig Y, Notte J and McVey S 2009 J. Vac. Sci. Technol. B 27 3244 10.1116/1.3237101 Livengood R, Tan S, Greenzweig Y, Notte J and McVey S J. Vac. Sci. Technol. 0734-211X 27 B 2009 3244 [33] Stanford M G, Lewis B B, Iberi V, Fowlkes J D, Tan S, Livengood R and Rack P D 2016 Small 12 1779 10.1002/smll.201503680 Stanford M G, Lewis B B, Iberi V, Fowlkes J D, Tan S, Livengood R and Rack P D Small 1442-8504 12 2016 1779 [34] Fox D, Chen Y, Faulkner C C and Zhang H 2012 Beilstein J. Nanotechnol. 3 579 10.3762/bjnano.3.67 Fox D, Chen Y, Faulkner C C and Zhang H Beilstein J. Nanotechnol. 3 2012 579 [35] Li R, Zhu R, Chen S, He C, Li M, Zhang J, Gao P, Liao Z and Xu J 2019 J. Vac. Sci. Technol. B 37 031804 10.1116/1.5096908 Li R, Zhu R, Chen S, He C, Li M, Zhang J, Gao P, Liao Z and Xu J J. Vac. Sci. Technol. 0734-211X 37 B 031804 2019 [36] Hang S, Moktadir Z and Mizuta H 2014 Carbon 72 233 10.1016/j.carbon.2014.01.071 Hang S, Moktadir Z and Mizuta H Carbon 72 2014 233 [37] Fairchild B A et al 2008 Adv. Mater. 20 4793 10.1002/adma.200801460 Fairchild B A et al Adv. Mater. 20 2008 4793 [38] Sumant A V, Auciello O, Liao M and Williams O A 2014 MRS Bull. 39 511 10.1557/mrs.2014.98 Sumant A V, Auciello O, Liao M and Williams O A MRS Bull. 0883-7694 39 2014 511 [39] Hausmann B J M, Bulu I, Venkataraman V, Deotare P and Loncar M 2014 Nat. Photon. 8 369 10.1038/nphoton.2014.72 Hausmann B J M, Bulu I, Venkataraman V, Deotare P and Loncar M Nat. Photon. 8 2014 369 [40] Zalalutdinov M K, Ray M P, Photiadis D M, Robinson J T, Baldwin W J, Butler J E, Feygelson T I, Pate B B and Houston B H 2011 Nano Lett. 11 4304 10.1021/nl202326e Zalalutdinov M K, Ray M P, Photiadis D M, Robinson J T, Baldwin W J, Butler J E, Feygelson T I, Pate B B and Houston B H Nano Lett. 11 2011 4304 [41] Kohn E, Gluche P and Adamschik M 1999 Diam. Relat. Mater. 8 934 10.1016/S0925-9635(98)00294-5 Kohn E, Gluche P and Adamschik M Diam. Relat. Mater. 0925-9635 8 1999 934 [42] Santori C, Barclay P E, Fu K-M C, Beausoleil R G, Spillane S and Fisch M 2010 Nanotechnology 21 274008 10.1088/0957-4484/21/27/274008 Santori C, Barclay P E, Fu K-M C, Beausoleil R G, Spillane S and Fisch M Nanotechnology 0957-4484 21 27 274008 2010 [43] Chu Y et al 2014 Nano Lett. 14 1982 10.1021/nl404836p Chu Y et al Nano Lett. 14 2014 1982 [44] Rugar D, Mamin H J, Sherwood M H, Kim M, Rettner C T, Ohno K and Awschalom D D 2014 Nat. Nanotechnol. 10 120 10.1038/nnano.2014.288 Rugar D, Mamin H J, Sherwood M H, Kim M, Rettner C T, Ohno K and Awschalom D D Nat. Nanotechnol. 10 2014 120 [45] Bhallamudi V P and Hammel P C 2015 Nat. Nanotechnol. 10 104 10.1038/nnano.2015.7 Bhallamudi V P and Hammel P C Nat. Nanotechnol. 10 2015 104 [46] Kruit P et al 2016 Ultramicroscopy 164 31 10.1016/j.ultramic.2016.03.004 Kruit P et al Ultramicroscopy 0304-3991 164 2016 31 [47] McCloskey D, Fox D, O’Hara N, Usov V, Scanlan D, McEvoy N, Duesberg G S, Cross G L W, Zhang H Z and Donegan J F 2014 Appl. Phys. Lett. 104 031109 10.1063/1.4862331 McCloskey D, Fox D, O’Hara N, Usov V, Scanlan D, McEvoy N, Duesberg G S, Cross G L W, Zhang H Z and Donegan J F Appl. Phys. Lett. 104 031109 2014 [48] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. B 268 1818–23 10.1016/j.nimb.2010.02.091 Ziegler J F, Ziegler M D and Biersack J P Nucl. Instrum. Methods Phys. Res. 0168-583X 268 B 2010 1818 1823 [49] Li Y G, Yang Y, Short M P, Ding Z J, Zeng Z and Li J 2015 Sci. Rep. 5 18130 10.1038/srep18130 Li Y G, Yang Y, Short M P, Ding Z J, Zeng Z and Li J Sci. Rep. 5 2015 18130 [50] Reutov V F and Sokhatskiī A S 2003 Tech. Phys. 48 68 10.1134/1.1538730 Reutov V F and Sokhatskiī A S Tech. Phys. 48 2003 68 [51] Tan S, Klein K, Shima D, Livengood R, Mutunga E and Vladár A 2014 J. Vac. Sci. Technol. B 32 06FA01 10.1116/1.4900728 Tan S, Klein K, Shima D, Livengood R, Mutunga E and Vladár A J. Vac. Sci. Technol. 0734-211X 32 B 06FA01 2014 [52] Fairchild B A, Rubanov S, Lau D W M, Robinson M, Suarez-Martinez I, Marks N, Greentree A D, McCulloch D and Prawer S 2012 Adv. Mater. 24 2024 10.1002/adma.201104511 Fairchild B A, Rubanov S, Lau D W M, Robinson M, Suarez-Martinez I, Marks N, Greentree A D, McCulloch D and Prawer S Adv. Mater. 24 2012 2024 [53] Evans J H 1977 J. Nucl. Mater. 68 129 10.1016/0022-3115(77)90232-X Evans J H J. Nucl. Mater. 0022-3115 68 1977 129 [54] Yang Y, Li Y G, Short M P, Kim C-S, Berggren K K and Li J 2018 Nanoscale 10 1598 10.1039/C7NR08116B Yang Y, Li Y G, Short M P, Kim C-S, Berggren K K and Li J Nanoscale 10 2018 1598 [55] Khmelnitsky R A, Dravin V A, Tal A A, Zavedeev E V, Khomich A A, Khomich A V, Alekseev A A and Terentiev S A 2015 J. Mater. Res. 30 1583 10.1557/jmr.2015.21 Khmelnitsky R A, Dravin V A, Tal A A, Zavedeev E V, Khomich A A, Khomich A V, Alekseev A A and Terentiev S A J. Mater. Res. 0884-2914 30 2015 1583 [56] Bosia F, Argiolas N, Bazzan M, Fairchild B A, Greentree A D, Lau D W M, Olivero P, Picollo F, Rubanov S and Prawer S 2013 J. Phys.: Condens. Matter 25 385403 10.1088/0953-8984/25/38/385403 Bosia F, Argiolas N, Bazzan M, Fairchild B A, Greentree A D, Lau D W M, Olivero P, Picollo F, Rubanov S and Prawer S J. Phys.: Condens. Matter 0953-8984 25 38 385403 2013 [57] Battiato A et al 2016 Acta Mater. 116 95 10.1016/j.actamat.2016.06.019 Battiato A et al Acta Mater. 1359-6454 116 2016 95 [58] Hlawacek G, Veligura V, van Gastel R and Poelsema B 2014 J. Vac. Sci. Technol. B 32 020801 10.1116/1.4863676 Hlawacek G, Veligura V, van Gastel R and Poelsema B J. Vac. Sci. Technol. 0734-211X 32 B 020801 2014 [59] Marshall M M, Yang J and Hall A R 2012 Scanning 34 101 10.1002/sca.21003 Marshall M M, Yang J and Hall A R Scanning 34 2012 101 [60] Duan H, Xie E, Han L and Xu Z 2008 Adv. Mater. 20 3284 10.1002/adma.200702149 Duan H, Xie E, Han L and Xu Z Adv. Mater. 20 2008 3284 [61] Timoshenko S and Woinowsky-Krieger S Theory of Plates and Shells 2nd edn (New York: McGraw-Hill) Timoshenko S and Woinowsky-Krieger S Theory of Plates and Shells [62] Ding S, Liu Y, Li Y, Liu Z, Sohn S, Walker F J and Schroers J 2014 Nat. Mater. 13 494 10.1038/nmat3939 Ding S, Liu Y, Li Y, Liu Z, Sohn S, Walker F J and Schroers J Nat. Mater. 13 2014 494 Publisher Copyright: © 2019 IOP Publishing Ltd.
PY - 2020
Y1 - 2020
N2 - Targeted irradiation of nanostructures by a finely focused ion beam provides routes to improved control of material modification and understanding of the physics of interactions between ion beams and nanomaterials. Here, we studied radiation damage in crystalline diamond and silicon nanostructures using a focused helium ion beam, with the former exhibiting extremely long-range ion propagation and large plastic deformation in a process visibly analogous to blow forming. We report the dependence of damage morphology on material, geometry, and irradiation conditions (ion dose, ion energy, ion species, and location). We anticipate that our method and findings will not only improve the understanding of radiation damage in isolated nanostructures, but will also support the design of new engineering materials and devices for current and future applications in nanotechnology.
AB - Targeted irradiation of nanostructures by a finely focused ion beam provides routes to improved control of material modification and understanding of the physics of interactions between ion beams and nanomaterials. Here, we studied radiation damage in crystalline diamond and silicon nanostructures using a focused helium ion beam, with the former exhibiting extremely long-range ion propagation and large plastic deformation in a process visibly analogous to blow forming. We report the dependence of damage morphology on material, geometry, and irradiation conditions (ion dose, ion energy, ion species, and location). We anticipate that our method and findings will not only improve the understanding of radiation damage in isolated nanostructures, but will also support the design of new engineering materials and devices for current and future applications in nanotechnology.
UR - http://www.scopus.com/inward/record.url?scp=85074309475&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85074309475&partnerID=8YFLogxK
U2 - 10.1088/1361-6528/ab4a65
DO - 10.1088/1361-6528/ab4a65
M3 - Article
C2 - 31578000
AN - SCOPUS:85074309475
SN - 0957-4484
VL - 31
JO - Nanotechnology
JF - Nanotechnology
IS - 4
M1 - 045302
ER -