Focused ultrasound to expel calculi from the kidney

Anup Shah, Jonathan D. Harper, Bryan W. Cunitz, Yak Nam Wang, Marla Paun, Julianna C. Simon, Wei Lu, Peter J. Kaczkowski, Michael R. Bailey

Research output: Contribution to journalArticlepeer-review

39 Scopus citations


A persistent stone burden after renal stone treatment may result in future patient morbidity and potentially lead to additional surgery. This problem is particularly common after treatment of lower pole stones. We describe a potential noninvasive therapeutic option using ultrasound waves to create a force sufficient to aid in stone fragment expulsion. Human stones were implanted by retrograde ureteroscopy or antegrade percutaneous access in a live porcine model. The calibrated probe of a system containing ultrasound imaging and focused ultrasound was used to target stones and attempt displacement. To assess for injury an additional 6 kidneys were exposed for 2 minutes each directly to the output used for stone movement. Another 6 kidneys were exposed to more than twice the maximum output used to move stones. Renal tissue was analyzed histologically with hematoxylin and eosin, and nicotinamide adenine dinucleotide staining. Stones were moved to the renal pelvis or ureteropelvic junction by less than 2 minutes of exposure. Stone velocity was approximately 1 cm per second. There was no tissue injury when tissue was exposed to the power level used to move stones. Localized thermal coagulation less than 1 cm long was observed in 6 of 7 renal units exposed to the level above that used for ultrasonic propulsion. Transcutaneous ultrasonic propulsion was used to expel calculi effectively and safely from the kidney using a live animal model. This study is the first step toward an office based system to clear residual fragments and toward use as a primary treatment modality in conjunction with medical expulsive therapy for small renal stones.

Original languageEnglish (US)
Pages (from-to)739-743
Number of pages5
JournalJournal of Urology
Issue number2
StatePublished - Feb 2012

All Science Journal Classification (ASJC) codes

  • Urology


Dive into the research topics of 'Focused ultrasound to expel calculi from the kidney'. Together they form a unique fingerprint.

Cite this