Formation of AlFx Gaseous Phases during High Temperature Etching: A Reactive Force Field Based Molecular Dynamics Study

Yongli Liu, Yang Qi, Xianwei Hu, Adri C.T. Van Duin

Research output: Contribution to journalArticle

Abstract

The progress of research focused upon the etching of metal films or substrates using fluorine gases has been restricted by limited information regarding etching reactants and byproducts. Indeed, aspects of the etching mechanism itself remain unclear. In this study, a new reactive force field (ReaxFF) for Al-F was developed to describe the interaction and reactions in Al-F materials. The ReaxFF accurately reproduces the quantum mechanics derived training set for structures and energies of gaseous AlFx molecules and Al-F crystals. Based on this Al-F ReaxFF, the effects of chemical source (F/Al = 1-6) and temperature (1000-1500 K) on the etching product and rate were studied. The formation of gaseous AlFx was revealed in five steps with the fluorine concentration being the prime factor affecting the etching products. Below the critical concentration ratio of F/Al = 3, where the chemical driving force is insufficient, only four of the five steps occur and a AlFx cluster is formed without significant gaseous species; above this critical concentration, a fifth step happens, and isolated AlFx gaseous phases with much more negative formation energies, such as AlF4, AlF5, and AlF6, can be formed. Besides this concentration ratio, external parameters such as elevated temperature or higher voltage dischage may be an important energetic factor affecting the product quantity. These results may provide insights into controlling the formation kinetics of specific AlFx compounds or gaseous phases for the preparative chemistry of Al-F porous catalyst, and the Al-F ReaxFF provides a useful tool for studying the interaction and reaction of Al-F materials at the atomic scale.

Original languageEnglish (US)
Pages (from-to)16823-16835
Number of pages13
JournalJournal of Physical Chemistry C
Volume123
Issue number27
DOIs
StatePublished - Jul 11 2019

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fingerprint Dive into the research topics of 'Formation of AlF<sub>x</sub> Gaseous Phases during High Temperature Etching: A Reactive Force Field Based Molecular Dynamics Study'. Together they form a unique fingerprint.

  • Cite this