Formation of hexagonal boron nitride on graphene-covered copper surfaces

Devashish P. Gopalan, Patrick C. Mende, Sergio C. De La Barrera, Shonali Dhingra, Jun Li, Kehao Zhang, Nicholas A. Simonson, Joshua A. Robinson, Ning Lu, Qingxiao Wang, Moon J. Kim, Brian D'Urso, Randall M. Feenstra

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Graphene-covered copper surfaces have been exposed to borazine, (BH)3(NH)3, with the resulting surfaces characterized by low-energy electron microscopy. Although the intent of the experiment was to form hexagonal boron nitride (h-BN) on top of the graphene, such layers were not obtained. Rather, in isolated surface areas, h-BN is found to form μm-size islands that substitute for the graphene. Additionally, over nearly the entire surface, the properties of the layer that was originally graphene is observed to change in a manner that is consistent with the formation of a mixed h-BN/graphene alloy, i.e., h-BNC alloy. Furthermore, following the deposition of the borazine, a small fraction of the surface is found to consist of bare copper, indicating etching of the overlying graphene. The inability to form h-BN layers on top of graphene is discussed in terms of the catalytic behavior of the underlying copper surface and the decomposition of the borazine on top of the graphene.

Original languageEnglish (US)
Pages (from-to)945-958
Number of pages14
JournalJournal of Materials Research
Volume31
Issue number7
DOIs
StatePublished - Apr 14 2016

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Formation of hexagonal boron nitride on graphene-covered copper surfaces'. Together they form a unique fingerprint.

Cite this