Formulation and validation of a ritz-based analytical model for design of periodically-layered isolators in compression

Research output: Contribution to conferencePaper

1 Citation (Scopus)

Abstract

Periodically-layered isolators exhibit transmissibility "stop bands" or frequency ranges in which there is very low transmissibility. An assumed modes method was used to model the three-dimensional elastic behavior of layered isolators. The approximating functions were formed as functions of the coordinate directions. A modal analysis was performed for a single elastomer and metal layer combination, or cell. A modal synthesis approach was then used to obtain a model of an n-celled isolator, from which isolator modal properties are determined. A procedure to calculate the frequency-dependent transmissibility of an isolator is described. This model of the dynamic behavior of layered isolators was validated with experiments. Analytical and experimental transmissibilities are compared, for test specimens having identical elastomer components, but different geometries and different numbers of cells. In addition, analytical and experimental transmissibilities are compared for geometrically similar test specimens with differing elastomeric damping properties. Finally, design optimization methodology is presented for layered isolators subject to various constraints. A simulated annealing algorithm is employed to determine optimal material properties, layer geometries, and number of cells.

Original languageEnglish (US)
DOIs
StatePublished - Jan 1 2001
Event19th AIAA Applied Aerodynamics Conference 2001 - Anaheim, CA, United States
Duration: Jun 11 2001Jun 14 2001

Other

Other19th AIAA Applied Aerodynamics Conference 2001
CountryUnited States
CityAnaheim, CA
Period6/11/016/14/01

Fingerprint

Analytical models
Elastomers
Geometry
Modal analysis
Simulated annealing
Materials properties
Damping
Metals
Experiments
Design optimization

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Mechanical Engineering

Cite this

Szefi, Joseph T. ; Smith, Edward ; Lesieutre, George A. / Formulation and validation of a ritz-based analytical model for design of periodically-layered isolators in compression. Paper presented at 19th AIAA Applied Aerodynamics Conference 2001, Anaheim, CA, United States.
@conference{26beba56a9c7416395d79bfa1c960ea5,
title = "Formulation and validation of a ritz-based analytical model for design of periodically-layered isolators in compression",
abstract = "Periodically-layered isolators exhibit transmissibility {"}stop bands{"} or frequency ranges in which there is very low transmissibility. An assumed modes method was used to model the three-dimensional elastic behavior of layered isolators. The approximating functions were formed as functions of the coordinate directions. A modal analysis was performed for a single elastomer and metal layer combination, or cell. A modal synthesis approach was then used to obtain a model of an n-celled isolator, from which isolator modal properties are determined. A procedure to calculate the frequency-dependent transmissibility of an isolator is described. This model of the dynamic behavior of layered isolators was validated with experiments. Analytical and experimental transmissibilities are compared, for test specimens having identical elastomer components, but different geometries and different numbers of cells. In addition, analytical and experimental transmissibilities are compared for geometrically similar test specimens with differing elastomeric damping properties. Finally, design optimization methodology is presented for layered isolators subject to various constraints. A simulated annealing algorithm is employed to determine optimal material properties, layer geometries, and number of cells.",
author = "Szefi, {Joseph T.} and Edward Smith and Lesieutre, {George A.}",
year = "2001",
month = "1",
day = "1",
doi = "10.2514/6.2001-1684",
language = "English (US)",
note = "19th AIAA Applied Aerodynamics Conference 2001 ; Conference date: 11-06-2001 Through 14-06-2001",

}

Szefi, JT, Smith, E & Lesieutre, GA 2001, 'Formulation and validation of a ritz-based analytical model for design of periodically-layered isolators in compression' Paper presented at 19th AIAA Applied Aerodynamics Conference 2001, Anaheim, CA, United States, 6/11/01 - 6/14/01, . https://doi.org/10.2514/6.2001-1684

Formulation and validation of a ritz-based analytical model for design of periodically-layered isolators in compression. / Szefi, Joseph T.; Smith, Edward; Lesieutre, George A.

2001. Paper presented at 19th AIAA Applied Aerodynamics Conference 2001, Anaheim, CA, United States.

Research output: Contribution to conferencePaper

TY - CONF

T1 - Formulation and validation of a ritz-based analytical model for design of periodically-layered isolators in compression

AU - Szefi, Joseph T.

AU - Smith, Edward

AU - Lesieutre, George A.

PY - 2001/1/1

Y1 - 2001/1/1

N2 - Periodically-layered isolators exhibit transmissibility "stop bands" or frequency ranges in which there is very low transmissibility. An assumed modes method was used to model the three-dimensional elastic behavior of layered isolators. The approximating functions were formed as functions of the coordinate directions. A modal analysis was performed for a single elastomer and metal layer combination, or cell. A modal synthesis approach was then used to obtain a model of an n-celled isolator, from which isolator modal properties are determined. A procedure to calculate the frequency-dependent transmissibility of an isolator is described. This model of the dynamic behavior of layered isolators was validated with experiments. Analytical and experimental transmissibilities are compared, for test specimens having identical elastomer components, but different geometries and different numbers of cells. In addition, analytical and experimental transmissibilities are compared for geometrically similar test specimens with differing elastomeric damping properties. Finally, design optimization methodology is presented for layered isolators subject to various constraints. A simulated annealing algorithm is employed to determine optimal material properties, layer geometries, and number of cells.

AB - Periodically-layered isolators exhibit transmissibility "stop bands" or frequency ranges in which there is very low transmissibility. An assumed modes method was used to model the three-dimensional elastic behavior of layered isolators. The approximating functions were formed as functions of the coordinate directions. A modal analysis was performed for a single elastomer and metal layer combination, or cell. A modal synthesis approach was then used to obtain a model of an n-celled isolator, from which isolator modal properties are determined. A procedure to calculate the frequency-dependent transmissibility of an isolator is described. This model of the dynamic behavior of layered isolators was validated with experiments. Analytical and experimental transmissibilities are compared, for test specimens having identical elastomer components, but different geometries and different numbers of cells. In addition, analytical and experimental transmissibilities are compared for geometrically similar test specimens with differing elastomeric damping properties. Finally, design optimization methodology is presented for layered isolators subject to various constraints. A simulated annealing algorithm is employed to determine optimal material properties, layer geometries, and number of cells.

UR - http://www.scopus.com/inward/record.url?scp=85067316658&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85067316658&partnerID=8YFLogxK

U2 - 10.2514/6.2001-1684

DO - 10.2514/6.2001-1684

M3 - Paper

AN - SCOPUS:85067316658

ER -