Front-curvature effects in the dynamics of confined radiatively bistable plasmas: Perfect patterns and Ostwald ripening

Igor Aronson, Baruch Meerson, Pavel V. Sasorov

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

Front-curvature effects in the dynamics of a confined optically thin isotropic plasma, which is heated by an external energy source and cooled radiatively, are investigated under conditions of thermal bistability. Reduced governing equations for such a plasma are derived, based on the elimination of the acoustic modes. Possible large-scale equilibria, describing segregation of the plasma into two "phases," dense and cool, and rarefied and hot, are found. Only objects with a constant mean curvature of their boundaries (the simplest of these are slabs, cylinders, and spheres) are shown to represent such equilibria. The curvature introduces a small correction to the "area rule" value of the equilibrium plasma pressure. The governing equations are reduced further and employed for stability analysis of individual equilibrium objects and of their ensembles. An equilibrium slab is found to be stable with respect to arbitrary perturbations. Similarly, a circular or spherical "drop" (or "bubble") is stable with respect to deformations of their shape. On the contrary, the same drop or bubble can be unstable with respect to a purely radial mode, and stability arguments determine the minimum possible radius of these objects. Ensembles of drops or bubbles show strong background-mediated competition (Ostwald ripening). Possible self-similar asymptotics of the time-dependent distribution of a large number of drops with respect to their radii are found. Two-dimensional numerical simulations of the dynamics of a confined bistable plasma are performed in a square "box." When starting from a broadband noise perturbation around a uniform state, we observe radiative segregation of the plasma, followed by background-mediated competition and establishment of either the slab-type, or the drop (or bubble)-type equilibrium. Finally, deformation instability of planar "evaporation" fronts, similar to the Darrieus-Landau instability of the laminar flame propagation, is found.

Original languageEnglish (US)
Pages (from-to)948-971
Number of pages24
JournalPhysical Review E
Volume52
Issue number1
DOIs
StatePublished - Jan 1 1995

Fingerprint

Ostwald Ripening
Ostwald ripening
Plasma
Curvature
curvature
Bubble
bubbles
slabs
Segregation
Governing equation
Ensemble
Radius
Perturbation
perturbation
radii
plasma pressure
Constant Mean Curvature
Bistability
flame propagation
energy sources

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Mathematical Physics
  • Condensed Matter Physics
  • Physics and Astronomy(all)

Cite this

@article{7bcf3cc09f7b4614a7ca9a5631a8a39c,
title = "Front-curvature effects in the dynamics of confined radiatively bistable plasmas: Perfect patterns and Ostwald ripening",
abstract = "Front-curvature effects in the dynamics of a confined optically thin isotropic plasma, which is heated by an external energy source and cooled radiatively, are investigated under conditions of thermal bistability. Reduced governing equations for such a plasma are derived, based on the elimination of the acoustic modes. Possible large-scale equilibria, describing segregation of the plasma into two {"}phases,{"} dense and cool, and rarefied and hot, are found. Only objects with a constant mean curvature of their boundaries (the simplest of these are slabs, cylinders, and spheres) are shown to represent such equilibria. The curvature introduces a small correction to the {"}area rule{"} value of the equilibrium plasma pressure. The governing equations are reduced further and employed for stability analysis of individual equilibrium objects and of their ensembles. An equilibrium slab is found to be stable with respect to arbitrary perturbations. Similarly, a circular or spherical {"}drop{"} (or {"}bubble{"}) is stable with respect to deformations of their shape. On the contrary, the same drop or bubble can be unstable with respect to a purely radial mode, and stability arguments determine the minimum possible radius of these objects. Ensembles of drops or bubbles show strong background-mediated competition (Ostwald ripening). Possible self-similar asymptotics of the time-dependent distribution of a large number of drops with respect to their radii are found. Two-dimensional numerical simulations of the dynamics of a confined bistable plasma are performed in a square {"}box.{"} When starting from a broadband noise perturbation around a uniform state, we observe radiative segregation of the plasma, followed by background-mediated competition and establishment of either the slab-type, or the drop (or bubble)-type equilibrium. Finally, deformation instability of planar {"}evaporation{"} fronts, similar to the Darrieus-Landau instability of the laminar flame propagation, is found.",
author = "Igor Aronson and Baruch Meerson and Sasorov, {Pavel V.}",
year = "1995",
month = "1",
day = "1",
doi = "10.1103/PhysRevE.52.948",
language = "English (US)",
volume = "52",
pages = "948--971",
journal = "Physical Review E",
issn = "2470-0045",
publisher = "American Physical Society",
number = "1",

}

Front-curvature effects in the dynamics of confined radiatively bistable plasmas : Perfect patterns and Ostwald ripening. / Aronson, Igor; Meerson, Baruch; Sasorov, Pavel V.

In: Physical Review E, Vol. 52, No. 1, 01.01.1995, p. 948-971.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Front-curvature effects in the dynamics of confined radiatively bistable plasmas

T2 - Perfect patterns and Ostwald ripening

AU - Aronson, Igor

AU - Meerson, Baruch

AU - Sasorov, Pavel V.

PY - 1995/1/1

Y1 - 1995/1/1

N2 - Front-curvature effects in the dynamics of a confined optically thin isotropic plasma, which is heated by an external energy source and cooled radiatively, are investigated under conditions of thermal bistability. Reduced governing equations for such a plasma are derived, based on the elimination of the acoustic modes. Possible large-scale equilibria, describing segregation of the plasma into two "phases," dense and cool, and rarefied and hot, are found. Only objects with a constant mean curvature of their boundaries (the simplest of these are slabs, cylinders, and spheres) are shown to represent such equilibria. The curvature introduces a small correction to the "area rule" value of the equilibrium plasma pressure. The governing equations are reduced further and employed for stability analysis of individual equilibrium objects and of their ensembles. An equilibrium slab is found to be stable with respect to arbitrary perturbations. Similarly, a circular or spherical "drop" (or "bubble") is stable with respect to deformations of their shape. On the contrary, the same drop or bubble can be unstable with respect to a purely radial mode, and stability arguments determine the minimum possible radius of these objects. Ensembles of drops or bubbles show strong background-mediated competition (Ostwald ripening). Possible self-similar asymptotics of the time-dependent distribution of a large number of drops with respect to their radii are found. Two-dimensional numerical simulations of the dynamics of a confined bistable plasma are performed in a square "box." When starting from a broadband noise perturbation around a uniform state, we observe radiative segregation of the plasma, followed by background-mediated competition and establishment of either the slab-type, or the drop (or bubble)-type equilibrium. Finally, deformation instability of planar "evaporation" fronts, similar to the Darrieus-Landau instability of the laminar flame propagation, is found.

AB - Front-curvature effects in the dynamics of a confined optically thin isotropic plasma, which is heated by an external energy source and cooled radiatively, are investigated under conditions of thermal bistability. Reduced governing equations for such a plasma are derived, based on the elimination of the acoustic modes. Possible large-scale equilibria, describing segregation of the plasma into two "phases," dense and cool, and rarefied and hot, are found. Only objects with a constant mean curvature of their boundaries (the simplest of these are slabs, cylinders, and spheres) are shown to represent such equilibria. The curvature introduces a small correction to the "area rule" value of the equilibrium plasma pressure. The governing equations are reduced further and employed for stability analysis of individual equilibrium objects and of their ensembles. An equilibrium slab is found to be stable with respect to arbitrary perturbations. Similarly, a circular or spherical "drop" (or "bubble") is stable with respect to deformations of their shape. On the contrary, the same drop or bubble can be unstable with respect to a purely radial mode, and stability arguments determine the minimum possible radius of these objects. Ensembles of drops or bubbles show strong background-mediated competition (Ostwald ripening). Possible self-similar asymptotics of the time-dependent distribution of a large number of drops with respect to their radii are found. Two-dimensional numerical simulations of the dynamics of a confined bistable plasma are performed in a square "box." When starting from a broadband noise perturbation around a uniform state, we observe radiative segregation of the plasma, followed by background-mediated competition and establishment of either the slab-type, or the drop (or bubble)-type equilibrium. Finally, deformation instability of planar "evaporation" fronts, similar to the Darrieus-Landau instability of the laminar flame propagation, is found.

UR - http://www.scopus.com/inward/record.url?scp=5544254552&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=5544254552&partnerID=8YFLogxK

U2 - 10.1103/PhysRevE.52.948

DO - 10.1103/PhysRevE.52.948

M3 - Article

AN - SCOPUS:5544254552

VL - 52

SP - 948

EP - 971

JO - Physical Review E

JF - Physical Review E

SN - 2470-0045

IS - 1

ER -