Full-scale reynolds number experiment on interactional aerodynamics between two model rotor hubs and a horizontal stabilizer

Leonard Metkowski, David Reich, Kyle Sinding, Nicholas A. Jaffa, Sven Schmitz

Research output: Contribution to journalConference article

4 Citations (Scopus)

Abstract

A full-scale Reynolds number water tunnel experiment was performed to generate a data set used to analyze the effects of helicopter rotor hub wake impingement on a canonical horizontal stabilizer. The experiment was designed and performed in the Pennsylvania State University Applied Research Laboratory Garfield Thomas Water Tunnel, where a 10.5 inch constant chord stabilizer was placed in the 48-inch diameter test section downstream of a 1/4 scale helicopter hub. Two rotor hubs were tested, a baseline configuration and a low-drag model. The stabilizer was mounted in the long-age wake. Lift, pitching moments, and unsteady pressures were measured on the horizontal stabilizer at a Reynolds number of 0.9 × 106, 1.8 × 106 and 2.7 × 106, corresponding to hub diameter-based Reynolds numbers of 2.2 × 106, 4.3 × 106, 6.5 × 106 and rotor advance ratios of 0.1, 0.2, and 0.3. The hub-wake interaction results were compared to a baseline airfoil test, which was performed without a hub upstream. Pressure sensors were used to evaluate wake unsteadiness impinging on the horizontal stabilizer. The horizontal stabilizer in clean flow exhibited lift and pitching moment in agreement with XFOIL predictions. With the low-drag hub upstream it measured lift fluctuations at a frequency of 2/rev, 4/rev, 8/rev and 12/rev. Downstream velocity and pressure fluctuations of 2/rev 4/rev and notably 6/rev were measured with the baseline hub upstream. Drag reduction on the low-drag hub was measured to be >25% compared to the baseline hub at full-scale Reynolds number. Both drag and wake harmonics measured at the hub and downstream on the stabilizer were found to be dependent on the upstream hub geometry. Pressure frequencies taken on the horizontal stabilizer yielded similar results and were consistent with those measured via the force balance.

Original languageEnglish (US)
JournalAnnual Forum Proceedings - AHS International
Volume2018-May
StatePublished - Jan 1 2018
Event74th American Helicopter Society International Annual Forum and Technology Display 2018: The Future of Vertical Flight - Phoenix, United States
Duration: May 14 2018May 17 2018

Fingerprint

Horizontal stabilizers
Aerodynamics
Reynolds number
Rotors
Drag
Experiments
Helicopter rotors
Drag reduction
Pressure sensors
Research laboratories
Airfoils
Helicopters
Wind tunnels
Water
Tunnels
Geometry

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Cite this

@article{616eca2c093c4fc9bb6cd72dc8ad8a19,
title = "Full-scale reynolds number experiment on interactional aerodynamics between two model rotor hubs and a horizontal stabilizer",
abstract = "A full-scale Reynolds number water tunnel experiment was performed to generate a data set used to analyze the effects of helicopter rotor hub wake impingement on a canonical horizontal stabilizer. The experiment was designed and performed in the Pennsylvania State University Applied Research Laboratory Garfield Thomas Water Tunnel, where a 10.5 inch constant chord stabilizer was placed in the 48-inch diameter test section downstream of a 1/4 scale helicopter hub. Two rotor hubs were tested, a baseline configuration and a low-drag model. The stabilizer was mounted in the long-age wake. Lift, pitching moments, and unsteady pressures were measured on the horizontal stabilizer at a Reynolds number of 0.9 × 106, 1.8 × 106 and 2.7 × 106, corresponding to hub diameter-based Reynolds numbers of 2.2 × 106, 4.3 × 106, 6.5 × 106 and rotor advance ratios of 0.1, 0.2, and 0.3. The hub-wake interaction results were compared to a baseline airfoil test, which was performed without a hub upstream. Pressure sensors were used to evaluate wake unsteadiness impinging on the horizontal stabilizer. The horizontal stabilizer in clean flow exhibited lift and pitching moment in agreement with XFOIL predictions. With the low-drag hub upstream it measured lift fluctuations at a frequency of 2/rev, 4/rev, 8/rev and 12/rev. Downstream velocity and pressure fluctuations of 2/rev 4/rev and notably 6/rev were measured with the baseline hub upstream. Drag reduction on the low-drag hub was measured to be >25{\%} compared to the baseline hub at full-scale Reynolds number. Both drag and wake harmonics measured at the hub and downstream on the stabilizer were found to be dependent on the upstream hub geometry. Pressure frequencies taken on the horizontal stabilizer yielded similar results and were consistent with those measured via the force balance.",
author = "Leonard Metkowski and David Reich and Kyle Sinding and Jaffa, {Nicholas A.} and Sven Schmitz",
year = "2018",
month = "1",
day = "1",
language = "English (US)",
volume = "2018-May",
journal = "Annual Forum Proceedings - AHS International",
issn = "1552-2938",
publisher = "American Helicopter Society",

}

Full-scale reynolds number experiment on interactional aerodynamics between two model rotor hubs and a horizontal stabilizer. / Metkowski, Leonard; Reich, David; Sinding, Kyle; Jaffa, Nicholas A.; Schmitz, Sven.

In: Annual Forum Proceedings - AHS International, Vol. 2018-May, 01.01.2018.

Research output: Contribution to journalConference article

TY - JOUR

T1 - Full-scale reynolds number experiment on interactional aerodynamics between two model rotor hubs and a horizontal stabilizer

AU - Metkowski, Leonard

AU - Reich, David

AU - Sinding, Kyle

AU - Jaffa, Nicholas A.

AU - Schmitz, Sven

PY - 2018/1/1

Y1 - 2018/1/1

N2 - A full-scale Reynolds number water tunnel experiment was performed to generate a data set used to analyze the effects of helicopter rotor hub wake impingement on a canonical horizontal stabilizer. The experiment was designed and performed in the Pennsylvania State University Applied Research Laboratory Garfield Thomas Water Tunnel, where a 10.5 inch constant chord stabilizer was placed in the 48-inch diameter test section downstream of a 1/4 scale helicopter hub. Two rotor hubs were tested, a baseline configuration and a low-drag model. The stabilizer was mounted in the long-age wake. Lift, pitching moments, and unsteady pressures were measured on the horizontal stabilizer at a Reynolds number of 0.9 × 106, 1.8 × 106 and 2.7 × 106, corresponding to hub diameter-based Reynolds numbers of 2.2 × 106, 4.3 × 106, 6.5 × 106 and rotor advance ratios of 0.1, 0.2, and 0.3. The hub-wake interaction results were compared to a baseline airfoil test, which was performed without a hub upstream. Pressure sensors were used to evaluate wake unsteadiness impinging on the horizontal stabilizer. The horizontal stabilizer in clean flow exhibited lift and pitching moment in agreement with XFOIL predictions. With the low-drag hub upstream it measured lift fluctuations at a frequency of 2/rev, 4/rev, 8/rev and 12/rev. Downstream velocity and pressure fluctuations of 2/rev 4/rev and notably 6/rev were measured with the baseline hub upstream. Drag reduction on the low-drag hub was measured to be >25% compared to the baseline hub at full-scale Reynolds number. Both drag and wake harmonics measured at the hub and downstream on the stabilizer were found to be dependent on the upstream hub geometry. Pressure frequencies taken on the horizontal stabilizer yielded similar results and were consistent with those measured via the force balance.

AB - A full-scale Reynolds number water tunnel experiment was performed to generate a data set used to analyze the effects of helicopter rotor hub wake impingement on a canonical horizontal stabilizer. The experiment was designed and performed in the Pennsylvania State University Applied Research Laboratory Garfield Thomas Water Tunnel, where a 10.5 inch constant chord stabilizer was placed in the 48-inch diameter test section downstream of a 1/4 scale helicopter hub. Two rotor hubs were tested, a baseline configuration and a low-drag model. The stabilizer was mounted in the long-age wake. Lift, pitching moments, and unsteady pressures were measured on the horizontal stabilizer at a Reynolds number of 0.9 × 106, 1.8 × 106 and 2.7 × 106, corresponding to hub diameter-based Reynolds numbers of 2.2 × 106, 4.3 × 106, 6.5 × 106 and rotor advance ratios of 0.1, 0.2, and 0.3. The hub-wake interaction results were compared to a baseline airfoil test, which was performed without a hub upstream. Pressure sensors were used to evaluate wake unsteadiness impinging on the horizontal stabilizer. The horizontal stabilizer in clean flow exhibited lift and pitching moment in agreement with XFOIL predictions. With the low-drag hub upstream it measured lift fluctuations at a frequency of 2/rev, 4/rev, 8/rev and 12/rev. Downstream velocity and pressure fluctuations of 2/rev 4/rev and notably 6/rev were measured with the baseline hub upstream. Drag reduction on the low-drag hub was measured to be >25% compared to the baseline hub at full-scale Reynolds number. Both drag and wake harmonics measured at the hub and downstream on the stabilizer were found to be dependent on the upstream hub geometry. Pressure frequencies taken on the horizontal stabilizer yielded similar results and were consistent with those measured via the force balance.

UR - http://www.scopus.com/inward/record.url?scp=85054489343&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85054489343&partnerID=8YFLogxK

M3 - Conference article

VL - 2018-May

JO - Annual Forum Proceedings - AHS International

JF - Annual Forum Proceedings - AHS International

SN - 1552-2938

ER -