Fullerene Polymer Complex Inducing Dipole Electric Field for Stable Perovskite Solar Cells

Congcong Wu, Kai Wang, Yongke Yan, Dong Yang, Yuanyuan Jiang, Bo Chi, Jianzhao Liu, Alan R. Esker, Jennifer Rowe, Amanda J. Morris, Mohan Sanghadasa, Shashank Priya

Research output: Contribution to journalArticlepeer-review

40 Scopus citations


Lead halide perovskite solar cells (PSCs) have demonstrated great potential for realizing low-cost and easily fabricated photovoltaics. At this juncture, power conversion efficiency and long-term stability are two important factors limiting their transition. PSCs exhibit rapid environmental degradation since the perovskite layer is very sensitive to factors such as humidity, temperature, and ultraviolet light. Here, a novel successful approach is demonstrated that simultaneously improves the efficiency and stability of PSCs. This approach relies on incorporation of a dual-functional polymethyl methacrylate (PMMA)–fullerene complex into the perovskite layer. The fullerene within perovskite layer forms a localized dipole-like electric field that favors electron–hole separation, resulting in significant improvement in current density and fill factor with conversion efficiency reaching 18.4%. The molecular-scale coating of hydrophobic PMMA on the perovskite grain boundary effectively blocks moisture penetration into the perovskite, thereby, significantly improving the stability against moisture, heat, and light. The PSCs with PMMA–fullerene complex showed no photovoltaic performance degradation for 250 d and exhibited 60 times higher stability compared to the state-of-the-art devices under continuous 1 sun illumination in ambient air.

Original languageEnglish (US)
Article number1804419
JournalAdvanced Functional Materials
Issue number12
StatePublished - Mar 21 2019

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics


Dive into the research topics of 'Fullerene Polymer Complex Inducing Dipole Electric Field for Stable Perovskite Solar Cells'. Together they form a unique fingerprint.

Cite this