TY - JOUR
T1 - Functional connectivity between the resting-state olfactory network and the hippocampus in Alzheimer’s disease
AU - Lu, Jiaming
AU - Testa, Nicole
AU - Jordan, Rebecca
AU - Elyan, Rommy
AU - Kanekar, Sangam
AU - Wang, Jianli
AU - Eslinger, Paul
AU - Yang, Qing X.
AU - Zhang, Bing
AU - Karunanayaka, Prasanna R.
N1 - Funding Information:
The financial assistance from the Japan Science and Technology Fund (JSTF) of the Natural Sciences and Engineering Research Council (NSERC) of Canada for supporting this collaborative research is gratefully acknowledged. We also acknowledge the many insightful comments and suggestions made by the area editor and thereviewers on earlier versions of this article.
Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/12
Y1 - 2019/12
N2 - Olfactory impairment is associated with prodromal Alzheimer’s disease (AD) and is a risk factor for the development of dementia. AD pathology is known to disrupt brain regions instrumental in olfactory information processing, such as the primary olfactory cortex (POC), the hippocampus, and other temporal lobe structures. This selective vulnerability suggests that the functional connectivity (FC) between the olfactory network (ON), consisting of the POC, insula and orbital frontal cortex (OFC) (Tobia et al., 2016), and the hippocampus may be impaired in early stage AD. Yet, the development trajectory of this potential FC impairment remains unclear. Here, we used resting-state functional magnetic resonance imaging (rs-fMRI) data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to investigate FC changes between the ON and hippocampus in four groups: aged-matched cognitively normal (CN), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and AD. FC was calculated using low frequency fMRI signal fluctuations in the ON and hippocampus (Tobia et al., 2016). We found that the FC between the ON and the right hippocampus became progressively disrupted across disease states, with significant differences between EMCI and LMCI groups. Additionally, there were no significant differences in gray matter hippocampal volumes between EMCI and LMCI groups. Lastly, the FC between the ON and hippocampus was significantly correlated with neuropsychological test scores, suggesting that it is related to cognition in a meaningful way. These findings provide the first in vivo evidence for the involvement of FC between the ON and hippocampus in AD pathology. Results suggest that functional connectivity (FC) between the olfactory network (ON) and hippocampus may be a sensitive marker for Alzheimer’s disease (AD) progression, preceding gray matter volume loss.
AB - Olfactory impairment is associated with prodromal Alzheimer’s disease (AD) and is a risk factor for the development of dementia. AD pathology is known to disrupt brain regions instrumental in olfactory information processing, such as the primary olfactory cortex (POC), the hippocampus, and other temporal lobe structures. This selective vulnerability suggests that the functional connectivity (FC) between the olfactory network (ON), consisting of the POC, insula and orbital frontal cortex (OFC) (Tobia et al., 2016), and the hippocampus may be impaired in early stage AD. Yet, the development trajectory of this potential FC impairment remains unclear. Here, we used resting-state functional magnetic resonance imaging (rs-fMRI) data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to investigate FC changes between the ON and hippocampus in four groups: aged-matched cognitively normal (CN), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and AD. FC was calculated using low frequency fMRI signal fluctuations in the ON and hippocampus (Tobia et al., 2016). We found that the FC between the ON and the right hippocampus became progressively disrupted across disease states, with significant differences between EMCI and LMCI groups. Additionally, there were no significant differences in gray matter hippocampal volumes between EMCI and LMCI groups. Lastly, the FC between the ON and hippocampus was significantly correlated with neuropsychological test scores, suggesting that it is related to cognition in a meaningful way. These findings provide the first in vivo evidence for the involvement of FC between the ON and hippocampus in AD pathology. Results suggest that functional connectivity (FC) between the olfactory network (ON) and hippocampus may be a sensitive marker for Alzheimer’s disease (AD) progression, preceding gray matter volume loss.
UR - http://www.scopus.com/inward/record.url?scp=85075501237&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075501237&partnerID=8YFLogxK
U2 - 10.3390/brainsci9120338
DO - 10.3390/brainsci9120338
M3 - Article
C2 - 31775369
AN - SCOPUS:85075501237
SN - 2076-3425
VL - 9
JO - Brain Sciences
JF - Brain Sciences
IS - 12
M1 - 338
ER -