Functional decoupling of melatonin suppression and circadian phase resetting in humans

Shadab A. Rahman, Melissa A. St Hilaire, Claude Gronfier, Anne Marie Chang, Nayantara Santhi, Charles A. Czeisler, Elizabeth B. Klerman, Steven W. Lockley

Research output: Contribution to journalArticle

14 Scopus citations

Abstract

Key points: There is assumed to be a monotonic association between melatonin suppression and circadian phase resetting induced by light exposure. We tested the association between melatonin suppression and phase resetting in humans. Sixteen young healthy participants received nocturnal bright light (∼9500 lux) exposure of continuous or intermittent patterns, and different durations ranging from 12 min to 6.5 h. Intermittent exposure patterns showed significant phase shifts with disproportionately less melatonin suppression. Each and every bright light stimulus in an intermittent exposure pattern induced a similar degree of melatonin suppression, but did not appear to cause an equal magnitude of phase shift. These results suggest that phase shifts and melatonin suppression are functionally independent such that one cannot be used as a proxy measure of the other. Abstract: Continuous experimental light exposures show that, in general, the conditions that produce greater melatonin suppression also produce greater phase shift, leading to the assumption that one can be used as a proxy for the other. We tested this association in 16 healthy individuals who participated in a 9-day inpatient protocol by assessing melatonin suppression and phase resetting in response to a nocturnal light exposure (LE) of different patterns: (i) dim-light control (<3 lux; n = 6) or (ii) two 12-min intermittent bright light pulses (IBL) separated by 36 min of darkness (∼9500 lux; n = 10). We compared these results with historical data from additional LE patterns: (i) dim-light control (<3 lux; n = 11); (ii) single continuous bright light exposure of 12 min (n = 9), 1.0 h (n = 10) or 6.5 h (n = 6); or (iii) an IBL light pattern consisting of six 15-min pulses with 1.0 h dim-light recovery intervals between them during a total of 6.5 h (n = 7). All light exposure groups had significantly greater phase-delay shifts than the dim-light control condition (P < 0.0001). While a monotonic association between melatonin suppression and circadian phase shift was observed, intermittent exposure patterns showed significant phase shifts with disproportionately less melatonin suppression. Each and every IBL stimulus induced a similar degree of melatonin suppression, but did not appear to cause an equal magnitude of phase shift. These results suggest unique specificities in how light-induced phase shifts and melatonin suppression are mediated such that one cannot be used as a proxy measure of the other.

Original languageEnglish (US)
Pages (from-to)2147-2157
Number of pages11
JournalJournal of Physiology
Volume596
Issue number11
DOIs
StatePublished - Jun 1 2018

All Science Journal Classification (ASJC) codes

  • Physiology

Fingerprint Dive into the research topics of 'Functional decoupling of melatonin suppression and circadian phase resetting in humans'. Together they form a unique fingerprint.

  • Cite this

    Rahman, S. A., St Hilaire, M. A., Gronfier, C., Chang, A. M., Santhi, N., Czeisler, C. A., Klerman, E. B., & Lockley, S. W. (2018). Functional decoupling of melatonin suppression and circadian phase resetting in humans. Journal of Physiology, 596(11), 2147-2157. https://doi.org/10.1113/JP275501