Functional mapping of human growth trajectories

Ning Li, Kiranmoy Das, Rongling Wu

Research output: Contribution to journalArticle

15 Scopus citations

Abstract

Human height is an important trait from biological and social perspectives. Genes have been widely recognized to be involved in human body growth, but their detailed controlling mechanisms are poorly understood. Here, we present a computational model for functional mapping of quantitative trait loci (QTLs) that control trajectories of human height growth through an interactive network. The model integrates mathematical equations of human growth curves into the mixture model-based functional mapping framework, allowing the identification and mapping of individual QTLs responsible for the developmental pattern of human growth. The model was derived on a random sample of subjects from a natural population, for each of which molecular markers within candidate genes or throughout the entire genome are typed and height data from childhood to adulthood are collected. A series of testable hypotheses are formulated about the genetic control of developmental timing and duration at different stages. The model was used to characterize epistatic QTLs for height growth hidden in 548 Japanese girls which is a semi-real data set with simulated the marker genotypes. With an increasing availability of genetic polymorphic data, the model will have great implications for probing the genetic and developmental mechanisms of human body growth and its associated diseases.

Original languageEnglish (US)
Pages (from-to)33-42
Number of pages10
JournalJournal of Theoretical Biology
Volume261
Issue number1
DOIs
StatePublished - Nov 7 2009

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Modeling and Simulation
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)
  • Agricultural and Biological Sciences(all)
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Functional mapping of human growth trajectories'. Together they form a unique fingerprint.

  • Cite this