Further insights into the spectroscopic properties, electronic structure, and kinetics of formation of the heme-peroxo-copper complex [(F 8TPP)FeIII-(O22-)-Cu II(TMPA)]+

Reza A. Ghiladi, Eduardo E. Chufán, Diego Del Río, Edward I. Solomon, Carsten Krebs, Hanh Huynh Boi, Hong Wei Huang, Pierre Moënne-Loccoz, Susan Kaderli, Marcus Honecker, Andreas D. Zuberbühler, Lisa Marzilli, Robert J. Cotter, Kenneth D. Karlin

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

In the further development and understanding of heme-copper O 2-reduction chemistry inspired by the active-site chemistry in cytochrome c oxidase, we describe a dioxygen adduct, [(F8TPP)Fe III-(O22-)-CuII(TMPA)](ClO 4) (3), formed by addition of O2 to a 1:1 mixture of the porphyrinate-iron(II) complex (F8TPP)FeII (1a) {F 8TPP = tetrakis(2,6-difluorophenyl)porphyrinate dianion} and the copper(I) complex [(TMPA)CuI(MeCN)](ClO4) (1b) {TMPA = tris(2-pyridylmethyl)amine}. Complex 3 forms in preference to heme-only or copper-only binuclear products, is remarkably stable {t1/2 (RT; MeCN) ≈ 20 min; λmax = 412 (Soret), 558 nm; EPR silent}, and is formulated as a peroxo complex on the basis of manometry {1a/1b/O2 = 1:1:1}, MALDI-TOF mass spectrometry {16O2, m/z 1239 [(3 + MeCN)+]; 18O2, m/z 1243}, and resonance Raman spectroscopy {ν(O-O) = 808 cm-1; Δ 16O2/18O2 = 46 cm-1; Δ16O2/16/18O2 = 23 cm -1}. Consistent with a μ-η21 bridging peroxide ligand, two metal-O stretching frequencies are observed {ν(Fe-O) = 533 cm-1, ν(Fe-O-Cu) = 511 cm-1}, and supporting normal coordinate analysis is presented. 2H and 19F NMR spectroscopies reveal that 3 is high-spin {also μB = 5.1 ± 0.2, Evans method} with downfield-shifted pyrrole and upfield-shifted TMPA resonances, similar to the pattern observed for the structurally characterized μ-oxo complex [(F8TPP)Fe III-O-CuII(TMPA)]+ (4) (known S = 2 system, antiferromagnetically coupled high-spin FeIII and CuII). Mössbauer spectroscopy exhibits a sharp quadrupole doublet (zero field; δ = 0.57 mm/s, |ΔEQ| = 1.14 mm/s) for 3, with isomer shift and magnetic field dependence data indicative of a peroxide ligand and S = 2 formulation. Both UV-visible-monitored stopped-flow kinetics and Mössbauer spectroscopic studies reveal the formation of heme-only superoxide complex (S)(F8TPP)FeIII-(O2 -) (2a) (S = solvent molecule) prior to 3. Thermal decomposition of μ-peroxo complex 3 yields μ-oxo complex 4 with concomitant release of ∼0.5 mol O2 per mol 3. Characterization of the reaction 1a/1b + O2 → 2 → 3 → 4, presented here, advances our understanding and provides new insights to heme/Cu dioxygen-binding and reduction.

Original languageEnglish (US)
Pages (from-to)3889-3902
Number of pages14
JournalInorganic chemistry
Volume46
Issue number10
DOIs
StatePublished - May 14 2007

Fingerprint

Heme
Electronic structure
Copper
peroxides
electronic structure
copper
Kinetics
Peroxides
kinetics
ligands
inorganic peroxides
oxidase
cytochromes
pyrroles
Oxygen
Ligands
spectroscopy
adducts
Pyrroles
thermal decomposition

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry

Cite this

Ghiladi, Reza A. ; Chufán, Eduardo E. ; Del Río, Diego ; Solomon, Edward I. ; Krebs, Carsten ; Boi, Hanh Huynh ; Huang, Hong Wei ; Moënne-Loccoz, Pierre ; Kaderli, Susan ; Honecker, Marcus ; Zuberbühler, Andreas D. ; Marzilli, Lisa ; Cotter, Robert J. ; Karlin, Kenneth D. / Further insights into the spectroscopic properties, electronic structure, and kinetics of formation of the heme-peroxo-copper complex [(F 8TPP)FeIII-(O22-)-Cu II(TMPA)]+. In: Inorganic chemistry. 2007 ; Vol. 46, No. 10. pp. 3889-3902.
@article{cacbe64163424fe7b923c83617b1a16d,
title = "Further insights into the spectroscopic properties, electronic structure, and kinetics of formation of the heme-peroxo-copper complex [(F 8TPP)FeIII-(O22-)-Cu II(TMPA)]+",
abstract = "In the further development and understanding of heme-copper O 2-reduction chemistry inspired by the active-site chemistry in cytochrome c oxidase, we describe a dioxygen adduct, [(F8TPP)Fe III-(O22-)-CuII(TMPA)](ClO 4) (3), formed by addition of O2 to a 1:1 mixture of the porphyrinate-iron(II) complex (F8TPP)FeII (1a) {F 8TPP = tetrakis(2,6-difluorophenyl)porphyrinate dianion} and the copper(I) complex [(TMPA)CuI(MeCN)](ClO4) (1b) {TMPA = tris(2-pyridylmethyl)amine}. Complex 3 forms in preference to heme-only or copper-only binuclear products, is remarkably stable {t1/2 (RT; MeCN) ≈ 20 min; λmax = 412 (Soret), 558 nm; EPR silent}, and is formulated as a peroxo complex on the basis of manometry {1a/1b/O2 = 1:1:1}, MALDI-TOF mass spectrometry {16O2, m/z 1239 [(3 + MeCN)+]; 18O2, m/z 1243}, and resonance Raman spectroscopy {ν(O-O) = 808 cm-1; Δ 16O2/18O2 = 46 cm-1; Δ16O2/16/18O2 = 23 cm -1}. Consistent with a μ-η2:η1 bridging peroxide ligand, two metal-O stretching frequencies are observed {ν(Fe-O) = 533 cm-1, ν(Fe-O-Cu) = 511 cm-1}, and supporting normal coordinate analysis is presented. 2H and 19F NMR spectroscopies reveal that 3 is high-spin {also μB = 5.1 ± 0.2, Evans method} with downfield-shifted pyrrole and upfield-shifted TMPA resonances, similar to the pattern observed for the structurally characterized μ-oxo complex [(F8TPP)Fe III-O-CuII(TMPA)]+ (4) (known S = 2 system, antiferromagnetically coupled high-spin FeIII and CuII). M{\"o}ssbauer spectroscopy exhibits a sharp quadrupole doublet (zero field; δ = 0.57 mm/s, |ΔEQ| = 1.14 mm/s) for 3, with isomer shift and magnetic field dependence data indicative of a peroxide ligand and S = 2 formulation. Both UV-visible-monitored stopped-flow kinetics and M{\"o}ssbauer spectroscopic studies reveal the formation of heme-only superoxide complex (S)(F8TPP)FeIII-(O2 -) (2a) (S = solvent molecule) prior to 3. Thermal decomposition of μ-peroxo complex 3 yields μ-oxo complex 4 with concomitant release of ∼0.5 mol O2 per mol 3. Characterization of the reaction 1a/1b + O2 → 2 → 3 → 4, presented here, advances our understanding and provides new insights to heme/Cu dioxygen-binding and reduction.",
author = "Ghiladi, {Reza A.} and Chuf{\'a}n, {Eduardo E.} and {Del R{\'i}o}, Diego and Solomon, {Edward I.} and Carsten Krebs and Boi, {Hanh Huynh} and Huang, {Hong Wei} and Pierre Mo{\"e}nne-Loccoz and Susan Kaderli and Marcus Honecker and Zuberb{\"u}hler, {Andreas D.} and Lisa Marzilli and Cotter, {Robert J.} and Karlin, {Kenneth D.}",
year = "2007",
month = "5",
day = "14",
doi = "10.1021/ic061726k",
language = "English (US)",
volume = "46",
pages = "3889--3902",
journal = "Inorganic Chemistry",
issn = "0020-1669",
publisher = "American Chemical Society",
number = "10",

}

Ghiladi, RA, Chufán, EE, Del Río, D, Solomon, EI, Krebs, C, Boi, HH, Huang, HW, Moënne-Loccoz, P, Kaderli, S, Honecker, M, Zuberbühler, AD, Marzilli, L, Cotter, RJ & Karlin, KD 2007, 'Further insights into the spectroscopic properties, electronic structure, and kinetics of formation of the heme-peroxo-copper complex [(F 8TPP)FeIII-(O22-)-Cu II(TMPA)]+', Inorganic chemistry, vol. 46, no. 10, pp. 3889-3902. https://doi.org/10.1021/ic061726k

Further insights into the spectroscopic properties, electronic structure, and kinetics of formation of the heme-peroxo-copper complex [(F 8TPP)FeIII-(O22-)-Cu II(TMPA)]+. / Ghiladi, Reza A.; Chufán, Eduardo E.; Del Río, Diego; Solomon, Edward I.; Krebs, Carsten; Boi, Hanh Huynh; Huang, Hong Wei; Moënne-Loccoz, Pierre; Kaderli, Susan; Honecker, Marcus; Zuberbühler, Andreas D.; Marzilli, Lisa; Cotter, Robert J.; Karlin, Kenneth D.

In: Inorganic chemistry, Vol. 46, No. 10, 14.05.2007, p. 3889-3902.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Further insights into the spectroscopic properties, electronic structure, and kinetics of formation of the heme-peroxo-copper complex [(F 8TPP)FeIII-(O22-)-Cu II(TMPA)]+

AU - Ghiladi, Reza A.

AU - Chufán, Eduardo E.

AU - Del Río, Diego

AU - Solomon, Edward I.

AU - Krebs, Carsten

AU - Boi, Hanh Huynh

AU - Huang, Hong Wei

AU - Moënne-Loccoz, Pierre

AU - Kaderli, Susan

AU - Honecker, Marcus

AU - Zuberbühler, Andreas D.

AU - Marzilli, Lisa

AU - Cotter, Robert J.

AU - Karlin, Kenneth D.

PY - 2007/5/14

Y1 - 2007/5/14

N2 - In the further development and understanding of heme-copper O 2-reduction chemistry inspired by the active-site chemistry in cytochrome c oxidase, we describe a dioxygen adduct, [(F8TPP)Fe III-(O22-)-CuII(TMPA)](ClO 4) (3), formed by addition of O2 to a 1:1 mixture of the porphyrinate-iron(II) complex (F8TPP)FeII (1a) {F 8TPP = tetrakis(2,6-difluorophenyl)porphyrinate dianion} and the copper(I) complex [(TMPA)CuI(MeCN)](ClO4) (1b) {TMPA = tris(2-pyridylmethyl)amine}. Complex 3 forms in preference to heme-only or copper-only binuclear products, is remarkably stable {t1/2 (RT; MeCN) ≈ 20 min; λmax = 412 (Soret), 558 nm; EPR silent}, and is formulated as a peroxo complex on the basis of manometry {1a/1b/O2 = 1:1:1}, MALDI-TOF mass spectrometry {16O2, m/z 1239 [(3 + MeCN)+]; 18O2, m/z 1243}, and resonance Raman spectroscopy {ν(O-O) = 808 cm-1; Δ 16O2/18O2 = 46 cm-1; Δ16O2/16/18O2 = 23 cm -1}. Consistent with a μ-η2:η1 bridging peroxide ligand, two metal-O stretching frequencies are observed {ν(Fe-O) = 533 cm-1, ν(Fe-O-Cu) = 511 cm-1}, and supporting normal coordinate analysis is presented. 2H and 19F NMR spectroscopies reveal that 3 is high-spin {also μB = 5.1 ± 0.2, Evans method} with downfield-shifted pyrrole and upfield-shifted TMPA resonances, similar to the pattern observed for the structurally characterized μ-oxo complex [(F8TPP)Fe III-O-CuII(TMPA)]+ (4) (known S = 2 system, antiferromagnetically coupled high-spin FeIII and CuII). Mössbauer spectroscopy exhibits a sharp quadrupole doublet (zero field; δ = 0.57 mm/s, |ΔEQ| = 1.14 mm/s) for 3, with isomer shift and magnetic field dependence data indicative of a peroxide ligand and S = 2 formulation. Both UV-visible-monitored stopped-flow kinetics and Mössbauer spectroscopic studies reveal the formation of heme-only superoxide complex (S)(F8TPP)FeIII-(O2 -) (2a) (S = solvent molecule) prior to 3. Thermal decomposition of μ-peroxo complex 3 yields μ-oxo complex 4 with concomitant release of ∼0.5 mol O2 per mol 3. Characterization of the reaction 1a/1b + O2 → 2 → 3 → 4, presented here, advances our understanding and provides new insights to heme/Cu dioxygen-binding and reduction.

AB - In the further development and understanding of heme-copper O 2-reduction chemistry inspired by the active-site chemistry in cytochrome c oxidase, we describe a dioxygen adduct, [(F8TPP)Fe III-(O22-)-CuII(TMPA)](ClO 4) (3), formed by addition of O2 to a 1:1 mixture of the porphyrinate-iron(II) complex (F8TPP)FeII (1a) {F 8TPP = tetrakis(2,6-difluorophenyl)porphyrinate dianion} and the copper(I) complex [(TMPA)CuI(MeCN)](ClO4) (1b) {TMPA = tris(2-pyridylmethyl)amine}. Complex 3 forms in preference to heme-only or copper-only binuclear products, is remarkably stable {t1/2 (RT; MeCN) ≈ 20 min; λmax = 412 (Soret), 558 nm; EPR silent}, and is formulated as a peroxo complex on the basis of manometry {1a/1b/O2 = 1:1:1}, MALDI-TOF mass spectrometry {16O2, m/z 1239 [(3 + MeCN)+]; 18O2, m/z 1243}, and resonance Raman spectroscopy {ν(O-O) = 808 cm-1; Δ 16O2/18O2 = 46 cm-1; Δ16O2/16/18O2 = 23 cm -1}. Consistent with a μ-η2:η1 bridging peroxide ligand, two metal-O stretching frequencies are observed {ν(Fe-O) = 533 cm-1, ν(Fe-O-Cu) = 511 cm-1}, and supporting normal coordinate analysis is presented. 2H and 19F NMR spectroscopies reveal that 3 is high-spin {also μB = 5.1 ± 0.2, Evans method} with downfield-shifted pyrrole and upfield-shifted TMPA resonances, similar to the pattern observed for the structurally characterized μ-oxo complex [(F8TPP)Fe III-O-CuII(TMPA)]+ (4) (known S = 2 system, antiferromagnetically coupled high-spin FeIII and CuII). Mössbauer spectroscopy exhibits a sharp quadrupole doublet (zero field; δ = 0.57 mm/s, |ΔEQ| = 1.14 mm/s) for 3, with isomer shift and magnetic field dependence data indicative of a peroxide ligand and S = 2 formulation. Both UV-visible-monitored stopped-flow kinetics and Mössbauer spectroscopic studies reveal the formation of heme-only superoxide complex (S)(F8TPP)FeIII-(O2 -) (2a) (S = solvent molecule) prior to 3. Thermal decomposition of μ-peroxo complex 3 yields μ-oxo complex 4 with concomitant release of ∼0.5 mol O2 per mol 3. Characterization of the reaction 1a/1b + O2 → 2 → 3 → 4, presented here, advances our understanding and provides new insights to heme/Cu dioxygen-binding and reduction.

UR - http://www.scopus.com/inward/record.url?scp=34249736263&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34249736263&partnerID=8YFLogxK

U2 - 10.1021/ic061726k

DO - 10.1021/ic061726k

M3 - Article

VL - 46

SP - 3889

EP - 3902

JO - Inorganic Chemistry

JF - Inorganic Chemistry

SN - 0020-1669

IS - 10

ER -