TY - JOUR
T1 - FUS (16p11) gene rearrangement as detected by fluorescence in-situ hybridization in cutaneous low-grade fibromyxoid sarcoma
T2 - A potential diagnostic tool
AU - Patel, Rajiv M.
AU - Downs-Kelly, Erinn
AU - Dandekar, Monisha N.
AU - Fanburg-Smith, Julie C.
AU - Billings, Steven D.
AU - Tubbs, Raymond R.
AU - Goldblum, John R.
PY - 2011/4
Y1 - 2011/4
N2 - Low-grade fibromyxoid sarcoma (LGFMS) is a rare, typically deep-seated soft tissue neoplasm with deceptively bland cytology and metastatic potential. A t(7;16)(q34;p11) translocation, yielding a FUS/CREB3L2 fusion gene, has been identified in approximately 80%-90% of deep soft tissue LGFMS. Cutaneous fibromyxoid neoplasms occur not infrequently; dermatopathologists rarely consider LGFMS in the differential diagnosis, as this lesion is uncommon in the skin. We identified a group of superficial LGFMS and a spectrum of other cutaneous fibromyxoid neoplasms and performed fluorescence in situ hybridization (FISH) to assess the frequency of FUS rearrangement. FISH for the chromosomal rearrangement of FUS (16p11), using a dual-color, break-apart probe (Abbott Molecular/Vysis, Des Plaines, IL), was performed on formalin-fixed paraffin-embedded tissue sections from superficial LGFMS (n = 6), myxomas (n = 10), and myxofibrosarcoma/myxoid malignant fibrous histiocytomas (myxoid MFH) (n = 5). One hundred nonoverlapping tumor nuclei per case were evaluated for either fused (normal) or split (translocated) signals. Of the LGFMS, 4 of 6 (67%) showed a rearrangement of FUS (range: 72%-80% positive nuclei per 100 nuclei). The other neoplasms within the differential diagnosis were devoid of any rearrangement involving FUS (range: 0%-2% positive nuclei per 100 nuclei). Our observed frequency of FUS rearrangement in superficial LGFMS is consistent with those published in the literature for more deeply seated lesions. When applied to suspicious superficial myxoid or fibromyxoid neoplasms, the FUS FISH probe in formalin-fixed paraffin-embedded tissue can be a useful ancillary technique for diagnosis of this uncommon and deceptively bland tumor.
AB - Low-grade fibromyxoid sarcoma (LGFMS) is a rare, typically deep-seated soft tissue neoplasm with deceptively bland cytology and metastatic potential. A t(7;16)(q34;p11) translocation, yielding a FUS/CREB3L2 fusion gene, has been identified in approximately 80%-90% of deep soft tissue LGFMS. Cutaneous fibromyxoid neoplasms occur not infrequently; dermatopathologists rarely consider LGFMS in the differential diagnosis, as this lesion is uncommon in the skin. We identified a group of superficial LGFMS and a spectrum of other cutaneous fibromyxoid neoplasms and performed fluorescence in situ hybridization (FISH) to assess the frequency of FUS rearrangement. FISH for the chromosomal rearrangement of FUS (16p11), using a dual-color, break-apart probe (Abbott Molecular/Vysis, Des Plaines, IL), was performed on formalin-fixed paraffin-embedded tissue sections from superficial LGFMS (n = 6), myxomas (n = 10), and myxofibrosarcoma/myxoid malignant fibrous histiocytomas (myxoid MFH) (n = 5). One hundred nonoverlapping tumor nuclei per case were evaluated for either fused (normal) or split (translocated) signals. Of the LGFMS, 4 of 6 (67%) showed a rearrangement of FUS (range: 72%-80% positive nuclei per 100 nuclei). The other neoplasms within the differential diagnosis were devoid of any rearrangement involving FUS (range: 0%-2% positive nuclei per 100 nuclei). Our observed frequency of FUS rearrangement in superficial LGFMS is consistent with those published in the literature for more deeply seated lesions. When applied to suspicious superficial myxoid or fibromyxoid neoplasms, the FUS FISH probe in formalin-fixed paraffin-embedded tissue can be a useful ancillary technique for diagnosis of this uncommon and deceptively bland tumor.
UR - http://www.scopus.com/inward/record.url?scp=85027934549&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027934549&partnerID=8YFLogxK
U2 - 10.1097/IAE.0b013e318176de80
DO - 10.1097/IAE.0b013e318176de80
M3 - Article
AN - SCOPUS:85027934549
VL - 33
SP - 140
EP - 143
JO - American Journal of Dermatopathology
JF - American Journal of Dermatopathology
SN - 0193-1091
IS - 2
ER -