Abstract
We extend the kinematic matrix ("kinematrix") formalism [Phys. Rev. E 89, 062304 (2014).PLEEE81539-375510.1103/PhysRevE.89.062304], which via simple matrix algebra accesses ensemble properties of self-propellers influenced by uncorrelated noise, to treat Gaussian correlated noises. This extension brings into reach many real-world biological and biomimetic self-propellers for which inertia is significant. Applying the formalism, we analyze in detail ensemble behaviors of a 2D self-propeller with velocity fluctuations and orientation evolution driven by an Ornstein-Uhlenbeck process. On the basis of exact results, a variety of dynamical regimes determined by the inertial, speed-fluctuation, orientational diffusion, and emergent disorientation time scales are delineated and discussed.
Original language | English (US) |
---|---|
Article number | 062304 |
Journal | Physical Review E - Statistical, Nonlinear, and Soft Matter Physics |
Volume | 90 |
Issue number | 6 |
DOIs | |
State | Published - Dec 4 2014 |
All Science Journal Classification (ASJC) codes
- Statistical and Nonlinear Physics
- Statistics and Probability
- Condensed Matter Physics