Generalized inductive limits of quasidiagonal C*-algebras

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

If A is a unital quasidiagonal C*-algebra, we construct a generalized inductive limit BA which is simple, unital and inherits many structural properties from A. If A is the unitization of a non-simple purely infinite algebra (e.g., the cone over a Cuntz algebra), then BA is tracially AF which, among other things, lends support to a conjecture of Toms.

Original languageEnglish (US)
Pages (from-to)451-462
Number of pages12
JournalJournal of Functional Analysis
Volume262
Issue number2
DOIs
StatePublished - Jan 15 2012

All Science Journal Classification (ASJC) codes

  • Analysis

Fingerprint Dive into the research topics of 'Generalized inductive limits of quasidiagonal C<sup>*</sup>-algebras'. Together they form a unique fingerprint.

Cite this