Generating physical addresses directly for saving instruction TLB energy

I. Kadayif, A. Sivasubramaniam, M. Kandemir, G. Kandiraju, G. Chen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

33 Scopus citations

Abstract

Power consumption and power density for the Translation Lookaside Buffer (TLB) are important considerations not only in its design, but can have a consequence on cache design as well. This paper embarks on a new philosophy for reducing the number of accesses to the instruction TLB (iTLB) for power and performance optimizations. The overall idea is to keep a translation currently being used in a register and avoid going to the iTLB as far as possible - until there is a page change. We propose four different approaches for achieving this, and experimentally demonstrate that one of these schemes that uses a combination of compiler and hardware enhancements can reduce iTLB dynamic power by over 85% in most cases. These mechanisms can work with different instruction-cache (iLl) lookup mechanisms and achieve significant iTLB power savings without compromising on performance. Their importance grows with higher iLl miss rates and larger page sizes. They can work very well with large iTLB structures, that can possibly consume more power and take longer to lookup, without the iTLB getting into the common case. Further, we also experimentally demonstrate that they can provide performance savings for virtually-indexed, virtually-tagged iLl caches, and can even make physically-indexed, physically-tagged iLl caches a possible choice for implementation.

Original languageEnglish (US)
Title of host publicationProceedings - 35th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2002
PublisherIEEE Computer Society
Pages185-196
Number of pages12
ISBN (Electronic)0769518591
DOIs
StatePublished - Jan 1 2002
Event35th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2002 - Istanbul, Turkey
Duration: Nov 18 2002Nov 22 2002

Publication series

NameProceedings of the Annual International Symposium on Microarchitecture, MICRO
Volume2002-January
ISSN (Print)1072-4451

Other

Other35th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2002
CountryTurkey
CityIstanbul
Period11/18/0211/22/02

All Science Journal Classification (ASJC) codes

  • Hardware and Architecture

Fingerprint Dive into the research topics of 'Generating physical addresses directly for saving instruction TLB energy'. Together they form a unique fingerprint.

Cite this