Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays

Rodolphe Barrangou, M. Andrea Azcarate-Peril, Tri Duong, Shannon B. Conners, Robert M. Kelly, Todd R. Klaenhammer

Research output: Contribution to journalArticlepeer-review

142 Scopus citations

Abstract

The transport and catabolic machinery involved in carbohydrate utilization by Lactobacillus acidophilus was characterized genetically by using whole-genome cDNA microarrays. Global transcriptional profiles were determined for growth on glucose, fructose, sucrose, lactose, galactose, trehalose, raffinose, and fructooligosaccharides. Hybridizations were carried out by using a round-robin design, and microarray data were analyzed with a two-stage mixed model ANOVA. Differentially expressed genes were visualized by hierarchical clustering, volcano plots, and contour plots. Overall, only 63 genes (3% of the genome) showed a >4-fold induction. Specifically, transporters of the phosphoeno/pyruvate: sugar transferase system were identified for uptake of glucose, fructose, sucrose, and trehalose, whereas ATP-binding cassette transporters were identified for uptake of raffinose and fructooligosaccharides. A member of the LacS subfamily of galactoside-pentose hexuronide translocators was identified for uptake of galactose and lactose. Saccharolytic enzymes likely involved in the metabolism of monosaccharides, disaccharides, and polysaccharides into substrates of glycolysis were also found, including enzymatic machinery of the Leloir pathway. The transcriptome appeared to be regulated by carbon catabolite repression. Although substrate-specific carbohydrate transporters and hydrolases were regulated at the transcriptional level, genes encoding regulatory proteins CcpA, Hpr, HprK/P, and EI were consistently highly expressed. Genes central to glycolysis were among the most highly expressed in the genome. Collectively, microarray data revealed that coordinated and regulated transcription of genes involved in sugar uptake and metabolism is based on the specific carbohydrate provided. L. acidophilus's adaptability to environmental conditions likely contributes to its competitive ability for limited carbohydrate sources available in the human gastrointestinal tract.

Original languageEnglish (US)
Pages (from-to)3816-3821
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume103
Issue number10
DOIs
StatePublished - Mar 7 2006

All Science Journal Classification (ASJC) codes

  • General

Fingerprint Dive into the research topics of 'Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays'. Together they form a unique fingerprint.

Cite this