Glucocorticoids modulate amino acid-induced translation initiation in human skeletal muscle

Zhenqi Liu, Guolian Li, Scot R. Kimball, Linda A. Jahn, Eugene J. Barrett

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Amino acids are unique anabolic agents in that they nutritively signal to mRNA translation initiation and serve as substrates for protein synthesis in skeletal muscle. Glucocorticoid excess antagonizes the anabolic action of amino acids on protein synthesis in laboratory animals. To examine whether excessive glucocorticoids modulate mixed amino acid-signaled translation initiation in human skeletal muscle, we infused an amino acid mixture (10% Travasol) systemically to 16 young healthy male volunteers for 6 h in the absence (n = 8) or presence (n = 8) of glucocorticoid excess (dexamethasone 2 mg orally every 6 h for 3 days). Vastus lateralis muscles were biopsied before and after amino acid infusion, and the phosphorylation of eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1), ribosomal protein S6 kinase (p70S6K), and eIF2α and the guanine nucleotide exchange activity of eIF2B were measured. Systemic infusion of mixed amino acids significantly stimulated the phosphorylation of 4E-BP1 (P < 0.04) and p70S6K (P < 0.001) and the dephosphorylation of eIF2α (P < 0.003) in the control group. Dexamethasone treatment did not alter the basal phosphorylation state of 4E-BP1, p70S6K, or eIF2α; however, it abrogated the stimulatory effect of amino acid infusion on the phosphorylation of 4E-BP1 (P = 0.31) without affecting amino acid-induced phosphorylation of p70S6K (P = 0.002) or dephosphorylation of eIF2α (P = 0.003). Neither amino acid nor dexamethasone treatment altered the guanine nucleotide exchange activity of eIF2B. We conclude that changes of amino acid concentrations within the physiological range stimulate mRNA translation by enhancing the binding of mRNA to the 43S preinitiation complex, and the activity of p70S6K and glucocorticoid excess blocks the former action in vivo in human skeletal muscle.

Original languageEnglish (US)
Pages (from-to)E275-E281
JournalAmerican Journal of Physiology - Endocrinology and Metabolism
Volume287
Issue number2 50-2
DOIs
StatePublished - Aug 2004

All Science Journal Classification (ASJC) codes

  • Endocrinology, Diabetes and Metabolism
  • Physiology
  • Physiology (medical)

Fingerprint Dive into the research topics of 'Glucocorticoids modulate amino acid-induced translation initiation in human skeletal muscle'. Together they form a unique fingerprint.

Cite this