Glucose increases synaptic transmission from vagal afferent central nerve terminals via modulation of 5-HT3 receptors

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

Acute hyperglycemia has profound effects on vagally mediated gastrointestinal functions. We have reported recently that the release of glutamate from the central terminals of vagal afferent neurons is correlated directly with the extracellular glucose concentration. The present study was designed to test the hypothesis that 5-HT3 receptors present on vagal afferent nerve terminals are involved in this glucose-dependent modulation of glutamatergic synaptic transmission. Whole-cell patch-clamp recordings were made from neurons of the nucleus tractus solitarius (NTS) in thin rat brainstem slices. Spontaneous and evoked glutamate release was decreased in a concentration-dependent manner by the 5-HT3 receptor selective antagonist, ondansetron. Alterations in the extracellular glucose concentration induced parallel shifts in the ondansetron-mediated inhibition of glutamate release. The changes in excitatory synaptic transmission induced by extracellular glucose concentration were mimicked by the serotonin uptake inhibitor, fenfluramine. These data suggest that glucose alters excitatory synaptic transmission within the rat brainstem via actions on tonically active 5-HT3 receptors, and the number of 5-HT3 receptors on vagal afferent nerve terminals is positively correlated with the extracellular glucose concentration. These data indicate that the 5-HT3 receptors present on synaptic connections between vagal afferent nerve terminals and NTS neurons are a strong candidate for consideration as one of the sites where glucose acts to modulate vagovagal reflexes.

Original languageEnglish (US)
Pages (from-to)G1050-G1057
JournalAmerican Journal of Physiology - Gastrointestinal and Liver Physiology
Volume295
Issue number5
DOIs
StatePublished - Nov 2008

All Science Journal Classification (ASJC) codes

  • Physiology
  • Hepatology
  • Gastroenterology
  • Physiology (medical)

Fingerprint Dive into the research topics of 'Glucose increases synaptic transmission from vagal afferent central nerve terminals via modulation of 5-HT<sub>3</sub> receptors'. Together they form a unique fingerprint.

Cite this