TY - JOUR
T1 - Green distributed storage using energy harvesting nodes
AU - Ibrahim, Abdelrahman M.
AU - Zewail, Ahmed A.
AU - Yener, Aylin
N1 - Funding Information:
This work was supported by the National Science Foundation Grant CCF 14-22347 and Grant CNS 15-26165. This work was presented in part at Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, November 2015.
Publisher Copyright:
© 1983-2012 IEEE.
PY - 2016/5
Y1 - 2016/5
N2 - We consider a distributed storage system where data storage nodes are equipped with energy harvesting transmitters. In particular, $F$ files are stored over $n$ storage nodes using regenerating codes. The main operations of the distributed storage system are serving the file requests of data collectors and repairing the content of storage nodes that fail or leave the system. Each operation has an associated energy expenditure. Under the intermittent energy arrival profile, we study the problem of maximizing the number of retrieved files given a deadline. Additionally, we consider the problem of minimizing the repair time of a failed node. Both optimization problems turn out to be equivalent to binary programs, for which we provide a tractable solution in two steps. First, we determine necessary and sufficient conditions on the harvested energy that ascertain the feasibility of retrieving (repairing) $M$ files in $T$ time slots. Using these conditions, we develop two algorithms that reduce the formulated optimization problems to a single feasibility problem. Then, we solve the feasibility problem using forward and backward algorithms. Additionally, we study the online setup where only causal knowledge of energy arrivals is available at the network nodes. We present numerical results on the short and long term performance of the system operations under the proposed algorithms.
AB - We consider a distributed storage system where data storage nodes are equipped with energy harvesting transmitters. In particular, $F$ files are stored over $n$ storage nodes using regenerating codes. The main operations of the distributed storage system are serving the file requests of data collectors and repairing the content of storage nodes that fail or leave the system. Each operation has an associated energy expenditure. Under the intermittent energy arrival profile, we study the problem of maximizing the number of retrieved files given a deadline. Additionally, we consider the problem of minimizing the repair time of a failed node. Both optimization problems turn out to be equivalent to binary programs, for which we provide a tractable solution in two steps. First, we determine necessary and sufficient conditions on the harvested energy that ascertain the feasibility of retrieving (repairing) $M$ files in $T$ time slots. Using these conditions, we develop two algorithms that reduce the formulated optimization problems to a single feasibility problem. Then, we solve the feasibility problem using forward and backward algorithms. Additionally, we study the online setup where only causal knowledge of energy arrivals is available at the network nodes. We present numerical results on the short and long term performance of the system operations under the proposed algorithms.
UR - http://www.scopus.com/inward/record.url?scp=84976394422&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84976394422&partnerID=8YFLogxK
U2 - 10.1109/JSAC.2016.2545538
DO - 10.1109/JSAC.2016.2545538
M3 - Article
AN - SCOPUS:84976394422
SN - 0733-8716
VL - 34
SP - 1590
EP - 1603
JO - IEEE Journal on Selected Areas in Communications
JF - IEEE Journal on Selected Areas in Communications
IS - 5
M1 - 7439738
ER -