Grid generation for three-dimensional turbomachinery geometries including tip clearance

Anton H. Basson, Robert F. Kunz, Budugur Lakshminarayana

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

An efficient technique for the generation of structured grids for viscous flow computations in turbomachinery blade rows (two- and three-dimensional), and a specialized embedded H-grid for application, particularly to tip clearance flows, are presented. The grid generation technique uses a combination of algebraic and elliptic methods to obtain smooth grids while maintaining strict control over grid spacing and orthogonality at domain boundaries. A geometric series scheme is used to distribute boundary points. Algebraically generated layers next to boundaries are used, thus excluding highly clustered regions from the elliptic generation procedure's domain. The computational efficiency of the elliptic generation procedure is greatly enhanced by the application of the minimal residual method. The embedded H-grid topology provides good resolution of tip clearance effects. This topology requires only minor modifications to flow solvers developed for conventional H-grids. The results obtained with an embedded H-grid are compared to those obtained using a thin-tip approximation. A linear compressor cascade with tip clearance was used as a test case. Both grid topologies capture the dominant flow structures associated with the leakage flow. The embedded H-grid provided better quantitative agreement with the experimental results.

Original languageEnglish (US)
Pages (from-to)59-66
Number of pages8
JournalJournal of Propulsion and Power
Volume9
Issue number1
DOIs
StatePublished - 1993

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Fuel Technology
  • Mechanical Engineering
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Grid generation for three-dimensional turbomachinery geometries including tip clearance'. Together they form a unique fingerprint.

Cite this