Haemodynamic and echocardiographic characteristics of a stentless allograft mitral prosthesis

An in Vitro Study

H. O. Vetter, A. Erhorn, Arnold Anthony Fontaine, B. Reichart, A. P. Yoganathan

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Poor long-term durability and impaired haemodynamic performance are known disadvantages of bioprosthetic heart valves when compared to valve replacement using aortic allografts. A new stentless allograft mitral implant was developed and tested in vitro in a left ventricular model and pulsatile flow system to evaluate hydrodynamic function. Mitral valves were excised from sheep hearts and the mitral annulus reinforced by a strip of ovine pericardium. A patch of expanded polytetrafluoroethylene (ePTFE) was placed above the tips of the remaining papillary muscles For in vitro evaluation of a total of five valves were investigated in a pulse duplicator. Transvalvular pressure gradients (ΔP) were measured over a flow range corresponding to a cardiac output of 51/min, at a heart rate of 70 beats/min, with a systole accounting for approximately 35% of the cardiac cycle. The systolic ejection period and diastolic filling period in this model were 350 and 510 ms, respectively, and aortic pressure was 120/80 mmHg. The effective orifice area was calculated from measurements of mean pressure drop and root mean square flow. Additionally, valve performance was evaluated by Doppler echocardiography, Results of in vitro studies of a 25 mm stentless allograft mitral implant, which is similar to the valves implanted in a chronic weanling sheep model, revealed a mean(s.d.) ΔP of 2.0(1.6) mmHg (range 1.0–4.9 mmHg). The mean calculated effective orifice area was 3.38(0.52) cm2 (range 2.5–3.8 cm2). Doppler echocardiography showed excellent performance of the mitral valve components and valve competence could be achieved. During the in vitro studies no failure caused by tissue rupture was detected. The results of the in vitro studies revealed data for ΔP and effective orifice area superior to data obtained for standard 25 mm porcine bioprostheses.

Original languageEnglish (US)
Pages (from-to)237-240
Number of pages4
JournalVascular
Volume4
Issue number2
DOIs
StatePublished - Jan 1 1996

Fingerprint

Prostheses and Implants
Allografts
Hemodynamics
Sheep
Doppler Echocardiography
Mitral Valve
Bioprosthesis
Pressure
Pulsatile Flow
Papillary Muscles
Systole
Pericardium
Heart Valves
Polytetrafluoroethylene
Hydrodynamics
Cardiac Output
Mental Competency
Rupture
Arterial Pressure
Swine

All Science Journal Classification (ASJC) codes

  • Surgery
  • Radiology Nuclear Medicine and imaging
  • Cardiology and Cardiovascular Medicine

Cite this

Vetter, H. O. ; Erhorn, A. ; Fontaine, Arnold Anthony ; Reichart, B. ; Yoganathan, A. P. / Haemodynamic and echocardiographic characteristics of a stentless allograft mitral prosthesis : An in Vitro Study. In: Vascular. 1996 ; Vol. 4, No. 2. pp. 237-240.
@article{e6ea32349c1749c0a6ae60c6244aa816,
title = "Haemodynamic and echocardiographic characteristics of a stentless allograft mitral prosthesis: An in Vitro Study",
abstract = "Poor long-term durability and impaired haemodynamic performance are known disadvantages of bioprosthetic heart valves when compared to valve replacement using aortic allografts. A new stentless allograft mitral implant was developed and tested in vitro in a left ventricular model and pulsatile flow system to evaluate hydrodynamic function. Mitral valves were excised from sheep hearts and the mitral annulus reinforced by a strip of ovine pericardium. A patch of expanded polytetrafluoroethylene (ePTFE) was placed above the tips of the remaining papillary muscles For in vitro evaluation of a total of five valves were investigated in a pulse duplicator. Transvalvular pressure gradients (ΔP) were measured over a flow range corresponding to a cardiac output of 51/min, at a heart rate of 70 beats/min, with a systole accounting for approximately 35{\%} of the cardiac cycle. The systolic ejection period and diastolic filling period in this model were 350 and 510 ms, respectively, and aortic pressure was 120/80 mmHg. The effective orifice area was calculated from measurements of mean pressure drop and root mean square flow. Additionally, valve performance was evaluated by Doppler echocardiography, Results of in vitro studies of a 25 mm stentless allograft mitral implant, which is similar to the valves implanted in a chronic weanling sheep model, revealed a mean(s.d.) ΔP of 2.0(1.6) mmHg (range 1.0–4.9 mmHg). The mean calculated effective orifice area was 3.38(0.52) cm2 (range 2.5–3.8 cm2). Doppler echocardiography showed excellent performance of the mitral valve components and valve competence could be achieved. During the in vitro studies no failure caused by tissue rupture was detected. The results of the in vitro studies revealed data for ΔP and effective orifice area superior to data obtained for standard 25 mm porcine bioprostheses.",
author = "Vetter, {H. O.} and A. Erhorn and Fontaine, {Arnold Anthony} and B. Reichart and Yoganathan, {A. P.}",
year = "1996",
month = "1",
day = "1",
doi = "10.1177/096721099600400224",
language = "English (US)",
volume = "4",
pages = "237--240",
journal = "Vascular",
issn = "1708-5381",
publisher = "SAGE Publications Ltd",
number = "2",

}

Haemodynamic and echocardiographic characteristics of a stentless allograft mitral prosthesis : An in Vitro Study. / Vetter, H. O.; Erhorn, A.; Fontaine, Arnold Anthony; Reichart, B.; Yoganathan, A. P.

In: Vascular, Vol. 4, No. 2, 01.01.1996, p. 237-240.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Haemodynamic and echocardiographic characteristics of a stentless allograft mitral prosthesis

T2 - An in Vitro Study

AU - Vetter, H. O.

AU - Erhorn, A.

AU - Fontaine, Arnold Anthony

AU - Reichart, B.

AU - Yoganathan, A. P.

PY - 1996/1/1

Y1 - 1996/1/1

N2 - Poor long-term durability and impaired haemodynamic performance are known disadvantages of bioprosthetic heart valves when compared to valve replacement using aortic allografts. A new stentless allograft mitral implant was developed and tested in vitro in a left ventricular model and pulsatile flow system to evaluate hydrodynamic function. Mitral valves were excised from sheep hearts and the mitral annulus reinforced by a strip of ovine pericardium. A patch of expanded polytetrafluoroethylene (ePTFE) was placed above the tips of the remaining papillary muscles For in vitro evaluation of a total of five valves were investigated in a pulse duplicator. Transvalvular pressure gradients (ΔP) were measured over a flow range corresponding to a cardiac output of 51/min, at a heart rate of 70 beats/min, with a systole accounting for approximately 35% of the cardiac cycle. The systolic ejection period and diastolic filling period in this model were 350 and 510 ms, respectively, and aortic pressure was 120/80 mmHg. The effective orifice area was calculated from measurements of mean pressure drop and root mean square flow. Additionally, valve performance was evaluated by Doppler echocardiography, Results of in vitro studies of a 25 mm stentless allograft mitral implant, which is similar to the valves implanted in a chronic weanling sheep model, revealed a mean(s.d.) ΔP of 2.0(1.6) mmHg (range 1.0–4.9 mmHg). The mean calculated effective orifice area was 3.38(0.52) cm2 (range 2.5–3.8 cm2). Doppler echocardiography showed excellent performance of the mitral valve components and valve competence could be achieved. During the in vitro studies no failure caused by tissue rupture was detected. The results of the in vitro studies revealed data for ΔP and effective orifice area superior to data obtained for standard 25 mm porcine bioprostheses.

AB - Poor long-term durability and impaired haemodynamic performance are known disadvantages of bioprosthetic heart valves when compared to valve replacement using aortic allografts. A new stentless allograft mitral implant was developed and tested in vitro in a left ventricular model and pulsatile flow system to evaluate hydrodynamic function. Mitral valves were excised from sheep hearts and the mitral annulus reinforced by a strip of ovine pericardium. A patch of expanded polytetrafluoroethylene (ePTFE) was placed above the tips of the remaining papillary muscles For in vitro evaluation of a total of five valves were investigated in a pulse duplicator. Transvalvular pressure gradients (ΔP) were measured over a flow range corresponding to a cardiac output of 51/min, at a heart rate of 70 beats/min, with a systole accounting for approximately 35% of the cardiac cycle. The systolic ejection period and diastolic filling period in this model were 350 and 510 ms, respectively, and aortic pressure was 120/80 mmHg. The effective orifice area was calculated from measurements of mean pressure drop and root mean square flow. Additionally, valve performance was evaluated by Doppler echocardiography, Results of in vitro studies of a 25 mm stentless allograft mitral implant, which is similar to the valves implanted in a chronic weanling sheep model, revealed a mean(s.d.) ΔP of 2.0(1.6) mmHg (range 1.0–4.9 mmHg). The mean calculated effective orifice area was 3.38(0.52) cm2 (range 2.5–3.8 cm2). Doppler echocardiography showed excellent performance of the mitral valve components and valve competence could be achieved. During the in vitro studies no failure caused by tissue rupture was detected. The results of the in vitro studies revealed data for ΔP and effective orifice area superior to data obtained for standard 25 mm porcine bioprostheses.

UR - http://www.scopus.com/inward/record.url?scp=0029923570&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029923570&partnerID=8YFLogxK

U2 - 10.1177/096721099600400224

DO - 10.1177/096721099600400224

M3 - Article

VL - 4

SP - 237

EP - 240

JO - Vascular

JF - Vascular

SN - 1708-5381

IS - 2

ER -