TY - JOUR
T1 - Harnessing the power of immersive virtual reality - visualization and analysis of 3D earth science data sets
AU - Zhao, Jiayan
AU - Wallgrün, Jan Oliver
AU - LaFemina, Peter C.
AU - Normandeau, Jim
AU - Klippel, Alexander
N1 - Funding Information:
This work was supported by the National Science Foundation [grant numbers 1526520 to AK and 0711456 to PL].
Publisher Copyright:
© 2019, © 2019 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2019/10/2
Y1 - 2019/10/2
N2 - The availability and quantity of remotely sensed and terrestrial geospatial data sets are on the rise. Historically, these data sets have been analyzed and quarried on 2D desktop computers; however, immersive technologies and specifically immersive virtual reality (iVR) allow for the integration, visualization, analysis, and exploration of these 3D geospatial data sets. iVR can deliver remote and large-scale geospatial data sets to the laboratory, providing embodied experiences of field sites across the earth and beyond. We describe a workflow for the ingestion of geospatial data sets and the development of an iVR workbench, and present the application of these for an experience of Iceland’s Thrihnukar volcano where we: (1) combined satellite imagery with terrain elevation data to create a basic reconstruction of the physical site; (2) used terrestrial LiDAR data to provide a geo-referenced point cloud model of the magmatic-volcanic system, as well as the LiDAR intensity values for the identification of rock types; and (3) used Structure-from-Motion (SfM) to construct a photorealistic point cloud of the inside volcano. The workbench provides tools for the direct manipulation of the georeferenced data sets, including scaling, rotation, and translation, and a suite of geometric measurement tools, including length, area, and volume. Future developments will be inspired by an ongoing user study that formally evaluates the workbench’s mature components in the context of fieldwork and analyses activities.
AB - The availability and quantity of remotely sensed and terrestrial geospatial data sets are on the rise. Historically, these data sets have been analyzed and quarried on 2D desktop computers; however, immersive technologies and specifically immersive virtual reality (iVR) allow for the integration, visualization, analysis, and exploration of these 3D geospatial data sets. iVR can deliver remote and large-scale geospatial data sets to the laboratory, providing embodied experiences of field sites across the earth and beyond. We describe a workflow for the ingestion of geospatial data sets and the development of an iVR workbench, and present the application of these for an experience of Iceland’s Thrihnukar volcano where we: (1) combined satellite imagery with terrain elevation data to create a basic reconstruction of the physical site; (2) used terrestrial LiDAR data to provide a geo-referenced point cloud model of the magmatic-volcanic system, as well as the LiDAR intensity values for the identification of rock types; and (3) used Structure-from-Motion (SfM) to construct a photorealistic point cloud of the inside volcano. The workbench provides tools for the direct manipulation of the georeferenced data sets, including scaling, rotation, and translation, and a suite of geometric measurement tools, including length, area, and volume. Future developments will be inspired by an ongoing user study that formally evaluates the workbench’s mature components in the context of fieldwork and analyses activities.
UR - http://www.scopus.com/inward/record.url?scp=85067548699&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85067548699&partnerID=8YFLogxK
U2 - 10.1080/10095020.2019.1621544
DO - 10.1080/10095020.2019.1621544
M3 - Article
AN - SCOPUS:85067548699
VL - 22
SP - 237
EP - 250
JO - Geo-Spatial Information Science
JF - Geo-Spatial Information Science
SN - 1009-5020
IS - 4
ER -