Heat transfer across crystalline and amorphous silicon surfaces in contact with water and the effects of the interfacial liquid structuring

Luis E. Paniagua-Guerra, C. Ulises Gonzalez-Valle, Bladimir Ramos-Alvarado

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

The understanding of nanoscale heat transfer across solid-liquid interfaces poses similar challenges as solid-solid interfaces; however, the higher mobility of liquid particles increases the complexity of this problem. It has been observed that liquid particles tend to form organized structures in the vicinity of solid surfaces; additionally, the formation of such structures has been reported to correlate with heat transfer across interfaces. Classical molecular dynamics simulations were used to investigate the behavior of liquid water in contact with crystalline and amorphous silicon. The in-plane and out-of-plane structure of interfacial water was characterized under different artificial wettability conditions, i.e., the silicon-water interaction potentials were calibrated to reproduce a wide range of wettability conditions. The change in the vibrational density of states was analyzed in order to quantify the mismatch between modes on both sides of the solid-liquid interfaces. Linear response theory was used to calculate the thermal boundary conductance at the different interfaces and a correlation was found between surface chemistry and heat transfer.

Original languageEnglish (US)
Title of host publicationHeat Transfer and Thermal Engineering
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791852125
DOIs
StatePublished - Jan 1 2018
EventASME 2018 International Mechanical Engineering Congress and Exposition, IMECE 2018 - Pittsburgh, United States
Duration: Nov 9 2018Nov 15 2018

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume8B-2018

Other

OtherASME 2018 International Mechanical Engineering Congress and Exposition, IMECE 2018
Country/TerritoryUnited States
CityPittsburgh
Period11/9/1811/15/18

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Heat transfer across crystalline and amorphous silicon surfaces in contact with water and the effects of the interfacial liquid structuring'. Together they form a unique fingerprint.

Cite this