Heat transfer and film-cooling measurements on a stator vane with fan-shaped cooling holes

W. Colban, A. Gratton, K. A. Thole, M. Haendler

Research output: Contribution to conferencePaperpeer-review

4 Scopus citations

Abstract

In a typical gas turbine engine, the gas exiting the combustor is significantly hotter than the melting temperature of the turbine components. The highest temperatures in an engine are typically seen by the turbine inlet guide vanes. One method used to cool the inlet guide vanes is film-cooling, which involves bleeding comparatively low-temperature, high-pressure air from the compressor and injecting it through an array of discrete holes on the vane surface. To predict the vane surface temperatures in the engine, it is necessary to measure the heat transfer coefficient and adiabatic film-cooling effectiveness on the vane surface. This study presents heat transfer coefficients and adiabatic effectiveness levels measured in a scaled-up, two-passage cascade with a contoured endwall. Heat transfer measurements indicated that the behavior of the boundary layer transition along the suction side of the vane showed sensitivity to the location of film-cooling injection, which was simulated through the use of a trip wire placed on the vane surface. Single row adiabatic effectiveness measurements without any upstream blowing showed jet lift-off was prevalent along the suction side of the airfoil. Single row adiabatic effectiveness measurements on the pressure side, also without upstream showerhead blowing, indicated jet lifted-off and then reattached to the surface in the concave region of the vane. In the presence of upstream showerhead blowing, the jet lift-off for the first pressure side row was reduced, increasing adiabatic effectiveness levels.

Original languageEnglish (US)
Pages299-309
Number of pages11
DOIs
StatePublished - 2005
EventASME Turbo Expo 2005 - Gas Turbie Technology: Focus for the Future - Reno-Tahoe, NV, United States
Duration: Jun 6 2005Jun 9 2005

Other

OtherASME Turbo Expo 2005 - Gas Turbie Technology: Focus for the Future
CountryUnited States
CityReno-Tahoe, NV
Period6/6/056/9/05

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint Dive into the research topics of 'Heat transfer and film-cooling measurements on a stator vane with fan-shaped cooling holes'. Together they form a unique fingerprint.

Cite this