Heat Transfer and film cooling on a contoured blade endwall with platform gap leakage

Research output: Contribution to journalArticle

7 Scopus citations

Abstract

Turbine blade components in an engine are typically designed with gaps between parts due to manufacturing, assembly, and operational considerations. Coolant is provided to these gaps to limit the ingestion of hot combustion gases. The interaction of the gaps, their leakage flows, and the complex vortical flow at the endwall of a turbine blade can significantly impact endwall heat transfer coefficients and the effectiveness of the leakage flow in providing localized cooling. In particular, a platform gap through the passage, representing the mating interface between adjacent blades in a wheel, has been shown to have a significant effect. Other important turbine blade features present in the engine environment are nonaxisymmetric contouring of the endwall, and an upstream rim seal with a gaspath cavity, which can reduce and increase endwall vortical flow, respectively. To understand the platform gap leakage effect in this environment, measurements of endwall heat transfer, and film cooling effectiveness were performed in a scaled blade cascade with a nonaxisymmetric contour in the passage. A rim seal with a cavity, representing the overlap interface between a stator and rotor, was included upstream of the blades and a nominal purge flowrate of 0.75% of the mainstream was supplied to the rim seal. The results indicated that the endwall heat transfer coefficients increased as the platform gap net leakage increased from 0% to 0.6% of the mainstream flowrate, but net heat flux to the endwall was reduced due to high cooling effectiveness of the leakage flow.

Original languageEnglish (US)
Article number051002
JournalJournal of Turbomachinery
Volume139
Issue number5
DOIs
StatePublished - May 1 2017

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Heat Transfer and film cooling on a contoured blade endwall with platform gap leakage'. Together they form a unique fingerprint.

  • Cite this