Abstract
Electron beam welding (EBW) of two important engineering alloys, Ti-6Al-4V and 21Cr-6Ni-9Mn, was studied experimentally and theoretically. The temperatures at several monitoring locations in the specimens were measured as a function of time during welding and the cross-sections of the welds were examined by optical microscopy. The theoretical research involved numerical simulation of heat transfer and fluid flow during EBW. The model output included temperature and velocity fields, fusion zone geometry and temperature versus time results. The numerically computed fusion zone geometry and the temperature versus time plots were compared with the corresponding experimentally determined values for each weld. Both the experimental and the modelling results were compared with the corresponding results for the keyhole mode laser beam welding (LBW). Both experimental and modelling results demonstrate that the fusion zone size in Ti-6Al-4V alloy was larger than that of the 21Cr-6Ni-9Mn stainless steel during both the electron beam and laser welding. Higher boiling point and lower solid state thermal conductivity of Ti-6Al-4V contributed to higher peak temperatures in Ti-6Al-4V welds compared with 21Cr-6Ni-9Mn stainless steel welds. In the EBW of both the alloys, there were significant velocities of liquid metal along the keyhole wall driven by the Marangoni convection. In contrast, during LBW, the velocities along the keyhole wall were negligible. Convective heat transfer was important in the transport of heat in the weld pool during both the laser and the EBW. The computed keyhole wall temperatures during EBW at low pressures were lower than those during the LBW at atmospheric pressure for identical heat input.
Original language | English (US) |
---|---|
Article number | 025503 |
Journal | Journal of Physics D: Applied Physics |
Volume | 42 |
Issue number | 2 |
DOIs | |
State | Published - Apr 9 2009 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Acoustics and Ultrasonics
- Surfaces, Coatings and Films