Hepatitis c virus: Molecular biology & current therapeutic options

Suresh D. Sharma

Research output: Contribution to journalReview article

56 Citations (Scopus)

Abstract

Hepatitis C virus (HCV) is a small (~55 to 65 nm), spherical, enveloped, hepatotropic RNA virus that causes acute and chronic hepatitis in humans. Persistent virus infection with HCV often leads to cirrhosis and hepatocellular carcinoma (HCC). At present there is neither a selective antiviral therapy nor a preventive vaccine. The only available treatment option is a long-acting pegylated-interferon-alpha, given in combination with nucleoside analog ribavirin, which is not very effective. Molecular studies of HCV began with the successful cloning of its genome in 1989. For many years, research to develop therapeutics was stalled by the inability to grow virus in tissue culture. A major milestone was achieved with the recent development of a robust cell culture system for HCV propagation. HCV proteins assemble and form replication complexes on modified host membranes, called as membranous webs. Even though HCV is detected and targeted by host immune mechanisms, it establishes and maintains a life-long persistent infection. HCV has evolved multiple strategies to survive and persist in hostile cellular environments; and the viral population is known to rapidly change during the course of a natural infection thereby escaping immune surveillance. Rapid mutations also help virus to survive by selecting for the variants which are resistant to antiviral drugs. Although precise mechanisms regulating HCV entry into hepatic cells via receptors remain unknown, HCV also has the capability of direct cell-to-cell transmission. The extremely complex and incompletely understood nature of the HCV lifecycle has complicated the discovery of new therapies. A complete understanding of the functional roles played by the HCV proteins during HCV lifecycle is vital for developing a successful cure. This review deals with current status of efforts in addressing these daunting tasks and challenges in developing therapeutics against chronic and rapidly changing hepatitis C virus.

Original languageEnglish (US)
Pages (from-to)17-34
Number of pages18
JournalIndian Journal of Medical Research
Volume131
Issue number1
StatePublished - Jan 1 2010

Fingerprint

Hepatitis Viruses
Molecular biology
Viruses
Hepacivirus
Molecular Biology
Therapeutics
Antiviral Agents
Virus Internalization
Ribavirin
RNA Viruses
Virus Diseases
Chronic Hepatitis
Infection
Nucleosides
Interferon-alpha
Tissue culture
Cloning
Organism Cloning
Hepatocytes
Hepatocellular Carcinoma

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)

Cite this

@article{111bf69f3cb44471b4dd186c39133594,
title = "Hepatitis c virus: Molecular biology & current therapeutic options",
abstract = "Hepatitis C virus (HCV) is a small (~55 to 65 nm), spherical, enveloped, hepatotropic RNA virus that causes acute and chronic hepatitis in humans. Persistent virus infection with HCV often leads to cirrhosis and hepatocellular carcinoma (HCC). At present there is neither a selective antiviral therapy nor a preventive vaccine. The only available treatment option is a long-acting pegylated-interferon-alpha, given in combination with nucleoside analog ribavirin, which is not very effective. Molecular studies of HCV began with the successful cloning of its genome in 1989. For many years, research to develop therapeutics was stalled by the inability to grow virus in tissue culture. A major milestone was achieved with the recent development of a robust cell culture system for HCV propagation. HCV proteins assemble and form replication complexes on modified host membranes, called as membranous webs. Even though HCV is detected and targeted by host immune mechanisms, it establishes and maintains a life-long persistent infection. HCV has evolved multiple strategies to survive and persist in hostile cellular environments; and the viral population is known to rapidly change during the course of a natural infection thereby escaping immune surveillance. Rapid mutations also help virus to survive by selecting for the variants which are resistant to antiviral drugs. Although precise mechanisms regulating HCV entry into hepatic cells via receptors remain unknown, HCV also has the capability of direct cell-to-cell transmission. The extremely complex and incompletely understood nature of the HCV lifecycle has complicated the discovery of new therapies. A complete understanding of the functional roles played by the HCV proteins during HCV lifecycle is vital for developing a successful cure. This review deals with current status of efforts in addressing these daunting tasks and challenges in developing therapeutics against chronic and rapidly changing hepatitis C virus.",
author = "Sharma, {Suresh D.}",
year = "2010",
month = "1",
day = "1",
language = "English (US)",
volume = "131",
pages = "17--34",
journal = "Indian Journal of Medical Research",
issn = "0971-5916",
publisher = "Indian Council of Medical Research",
number = "1",

}

Hepatitis c virus : Molecular biology & current therapeutic options. / Sharma, Suresh D.

In: Indian Journal of Medical Research, Vol. 131, No. 1, 01.01.2010, p. 17-34.

Research output: Contribution to journalReview article

TY - JOUR

T1 - Hepatitis c virus

T2 - Molecular biology & current therapeutic options

AU - Sharma, Suresh D.

PY - 2010/1/1

Y1 - 2010/1/1

N2 - Hepatitis C virus (HCV) is a small (~55 to 65 nm), spherical, enveloped, hepatotropic RNA virus that causes acute and chronic hepatitis in humans. Persistent virus infection with HCV often leads to cirrhosis and hepatocellular carcinoma (HCC). At present there is neither a selective antiviral therapy nor a preventive vaccine. The only available treatment option is a long-acting pegylated-interferon-alpha, given in combination with nucleoside analog ribavirin, which is not very effective. Molecular studies of HCV began with the successful cloning of its genome in 1989. For many years, research to develop therapeutics was stalled by the inability to grow virus in tissue culture. A major milestone was achieved with the recent development of a robust cell culture system for HCV propagation. HCV proteins assemble and form replication complexes on modified host membranes, called as membranous webs. Even though HCV is detected and targeted by host immune mechanisms, it establishes and maintains a life-long persistent infection. HCV has evolved multiple strategies to survive and persist in hostile cellular environments; and the viral population is known to rapidly change during the course of a natural infection thereby escaping immune surveillance. Rapid mutations also help virus to survive by selecting for the variants which are resistant to antiviral drugs. Although precise mechanisms regulating HCV entry into hepatic cells via receptors remain unknown, HCV also has the capability of direct cell-to-cell transmission. The extremely complex and incompletely understood nature of the HCV lifecycle has complicated the discovery of new therapies. A complete understanding of the functional roles played by the HCV proteins during HCV lifecycle is vital for developing a successful cure. This review deals with current status of efforts in addressing these daunting tasks and challenges in developing therapeutics against chronic and rapidly changing hepatitis C virus.

AB - Hepatitis C virus (HCV) is a small (~55 to 65 nm), spherical, enveloped, hepatotropic RNA virus that causes acute and chronic hepatitis in humans. Persistent virus infection with HCV often leads to cirrhosis and hepatocellular carcinoma (HCC). At present there is neither a selective antiviral therapy nor a preventive vaccine. The only available treatment option is a long-acting pegylated-interferon-alpha, given in combination with nucleoside analog ribavirin, which is not very effective. Molecular studies of HCV began with the successful cloning of its genome in 1989. For many years, research to develop therapeutics was stalled by the inability to grow virus in tissue culture. A major milestone was achieved with the recent development of a robust cell culture system for HCV propagation. HCV proteins assemble and form replication complexes on modified host membranes, called as membranous webs. Even though HCV is detected and targeted by host immune mechanisms, it establishes and maintains a life-long persistent infection. HCV has evolved multiple strategies to survive and persist in hostile cellular environments; and the viral population is known to rapidly change during the course of a natural infection thereby escaping immune surveillance. Rapid mutations also help virus to survive by selecting for the variants which are resistant to antiviral drugs. Although precise mechanisms regulating HCV entry into hepatic cells via receptors remain unknown, HCV also has the capability of direct cell-to-cell transmission. The extremely complex and incompletely understood nature of the HCV lifecycle has complicated the discovery of new therapies. A complete understanding of the functional roles played by the HCV proteins during HCV lifecycle is vital for developing a successful cure. This review deals with current status of efforts in addressing these daunting tasks and challenges in developing therapeutics against chronic and rapidly changing hepatitis C virus.

UR - http://www.scopus.com/inward/record.url?scp=76149141825&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=76149141825&partnerID=8YFLogxK

M3 - Review article

C2 - 20167971

AN - SCOPUS:76149141825

VL - 131

SP - 17

EP - 34

JO - Indian Journal of Medical Research

JF - Indian Journal of Medical Research

SN - 0971-5916

IS - 1

ER -