TY - JOUR
T1 - Heterogeneous gene expression from the inactive X chromosome
T2 - An X-linked gene that escapes X inactivation in some human cell lines but is inactivated in others
AU - Carrel, Laura
AU - Willard, Huntington F.
PY - 1999/6/22
Y1 - 1999/6/22
N2 - In mammalian females, most genes on one X chromosome are transcriptionally silenced as a result of X chromosome inactivation. Whereas it is well established that some X-linked genes "escape" X inactivation and are expressed from both active (Xa) and inactive (Xi) X chromosomes, most models for the chromosomal control of X-linked gene expression assume that the X inactivation status of a given gene is constant among different females within a population. In this report, we test the expression of human X-linked genes in primary cell lines from females with complete nonrandom X inactivation, by using transcribed polymorphisms to distinguish Xa and Xi expression. Six X-linked genes used to document this assay system showed monoallelic expression in all informative cell lines, consistent with X inactivation. However, a novel pattern of expression was observed for another gene, REP1; monoallelic expression, indicating inactivation, was detected in some lines, whereas biallelic expression, indicating escape from inactivation, was detected in others. Furthermore, levels of Xi expression varied among cell lines that expressed REP1. The cellular basis of Xi expression was examined by expression assays in single cells. These data indicate that REP1 is expressed from the Xi in all cells, but that the level of expression relative to Xa levels is reduced. These findings suggest that Xi gene expression is under a previously unsuspected level of genetic or epigenetic control, likely involving local or regional changes in chromatin organization that determine whether a gene escapes or is subject to X inactivation.
AB - In mammalian females, most genes on one X chromosome are transcriptionally silenced as a result of X chromosome inactivation. Whereas it is well established that some X-linked genes "escape" X inactivation and are expressed from both active (Xa) and inactive (Xi) X chromosomes, most models for the chromosomal control of X-linked gene expression assume that the X inactivation status of a given gene is constant among different females within a population. In this report, we test the expression of human X-linked genes in primary cell lines from females with complete nonrandom X inactivation, by using transcribed polymorphisms to distinguish Xa and Xi expression. Six X-linked genes used to document this assay system showed monoallelic expression in all informative cell lines, consistent with X inactivation. However, a novel pattern of expression was observed for another gene, REP1; monoallelic expression, indicating inactivation, was detected in some lines, whereas biallelic expression, indicating escape from inactivation, was detected in others. Furthermore, levels of Xi expression varied among cell lines that expressed REP1. The cellular basis of Xi expression was examined by expression assays in single cells. These data indicate that REP1 is expressed from the Xi in all cells, but that the level of expression relative to Xa levels is reduced. These findings suggest that Xi gene expression is under a previously unsuspected level of genetic or epigenetic control, likely involving local or regional changes in chromatin organization that determine whether a gene escapes or is subject to X inactivation.
UR - http://www.scopus.com/inward/record.url?scp=0033594960&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033594960&partnerID=8YFLogxK
U2 - 10.1073/pnas.96.13.7364
DO - 10.1073/pnas.96.13.7364
M3 - Article
C2 - 10377420
AN - SCOPUS:0033594960
VL - 96
SP - 7364
EP - 7369
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
SN - 0027-8424
IS - 13
ER -