Hierarchically structured meta-learning

Huaxiu Yao, Ying Wei, Junzhou Huang, Zhenhui Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

In order to leam quickly with few samples, metalearning utilizes prior knowledge learned from previous tasks. However, a critical challenge in meta-learning is task uncertainty and heterogeneity, which can not be handled via globally sharing knowledge among tasks. In this paper, based on gradient-based meta-learning, we propose a hierarchically structured meta-learning (HSML) algorithm that explicitly tailors the transferable knowledge to different clusters of tasks. Inspired by the way human beings organize knowledge, we resort to a hierarchical task clustering structure to cluster tasks. As a result, the proposed approach not only addresses the challenge via the knowledge customization to different clusters of tasks, but also preserves knowledge generalization among a cluster of similar tasks. To tackle the changing of task relationship, in addition, we extend the hierarchical structure to a continual learning environment. The experimental results show that our approach can achieve state-of-the-art performance in both toy-regression and few-shot image classification problems.

Original languageEnglish (US)
Title of host publication36th International Conference on Machine Learning, ICML 2019
PublisherInternational Machine Learning Society (IMLS)
Pages12189-12209
Number of pages21
ISBN (Electronic)9781510886988
StatePublished - 2019
Event36th International Conference on Machine Learning, ICML 2019 - Long Beach, United States
Duration: Jun 9 2019Jun 15 2019

Publication series

Name36th International Conference on Machine Learning, ICML 2019
Volume2019-June

Conference

Conference36th International Conference on Machine Learning, ICML 2019
CountryUnited States
CityLong Beach
Period6/9/196/15/19

All Science Journal Classification (ASJC) codes

  • Education
  • Computer Science Applications
  • Human-Computer Interaction

Fingerprint Dive into the research topics of 'Hierarchically structured meta-learning'. Together they form a unique fingerprint.

Cite this