High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2

Dong Yang, Ruixia Yang, Kai Wang, Congcong Wu, Xuejie Zhu, Jiangshan Feng, Xiaodong Ren, Guojia Fang, Shashank Priya, Shengzhong (Frank) Liu

Research output: Contribution to journalArticle

328 Scopus citations

Abstract

Even though the mesoporous-type perovskite solar cell (PSC) is known for high efficiency, its planar-type counterpart exhibits lower efficiency and hysteretic response. Herein, we report success in suppressing hysteresis and record efficiency for planar-type devices using EDTA-complexed tin oxide (SnO2) electron-transport layer. The Fermi level of EDTA-complexed SnO2 is better matched with the conduction band of perovskite, leading to high open-circuit voltage. Its electron mobility is about three times larger than that of the SnO2. The record power conversion efficiency of planar-type PSCs with EDTA-complexed SnO2 increases to 21.60% (certified at 21.52% by Newport) with negligible hysteresis. Meanwhile, the low-temperature processed EDTA-complexed SnO2 enables 18.28% efficiency for a flexible device. Moreover, the unsealed PSCs with EDTA-complexed SnO2 degrade only by 8% exposed in an ambient atmosphere after 2880 h, and only by 14% after 120 h under irradiation at 100 mW cm−2.

Original languageEnglish (US)
Article number3239
JournalNature communications
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2018

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO<sub>2</sub>'. Together they form a unique fingerprint.

  • Cite this