High-mobility few-layer graphene field effect transistors fabricated on epitaxial ferroelectric gate oxides

X. Hong, A. Posadas, K. Zou, C. H. Ahn, J. Zhu

Research output: Contribution to journalArticle

158 Citations (Scopus)

Abstract

The carrier mobility μ of few-layer graphene (FLG) field-effect transistors increases tenfold when the SiO2 substrate is replaced by single-crystal epitaxial Pb(Zr0.2Ti0.8)O3 (PZT). In the electron-only regime of the FLG, μ reaches 7×104cm2/Vs at 300 K for n=2.4×1012/cm2, 70% of the intrinsic limit set by longitudinal acoustic (LA) phonons; it increases to 1.4×105cm2/Vs at low temperature. The temperature-dependent resistivity ρ(T) reveals a clear signature of LA phonon scattering, yielding a deformation potential D=7.8±0.5eV.

Original languageEnglish (US)
Article number136808
JournalPhysical Review Letters
Volume102
Issue number13
DOIs
StatePublished - Mar 30 2009

Fingerprint

graphene
field effect transistors
oxides
acoustics
carrier mobility
phonons
signatures
electrical resistivity
single crystals
scattering
electrons
temperature

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Cite this

@article{4af8f264267944e9807b3cb3eb89624d,
title = "High-mobility few-layer graphene field effect transistors fabricated on epitaxial ferroelectric gate oxides",
abstract = "The carrier mobility μ of few-layer graphene (FLG) field-effect transistors increases tenfold when the SiO2 substrate is replaced by single-crystal epitaxial Pb(Zr0.2Ti0.8)O3 (PZT). In the electron-only regime of the FLG, μ reaches 7×104cm2/Vs at 300 K for n=2.4×1012/cm2, 70{\%} of the intrinsic limit set by longitudinal acoustic (LA) phonons; it increases to 1.4×105cm2/Vs at low temperature. The temperature-dependent resistivity ρ(T) reveals a clear signature of LA phonon scattering, yielding a deformation potential D=7.8±0.5eV.",
author = "X. Hong and A. Posadas and K. Zou and Ahn, {C. H.} and J. Zhu",
year = "2009",
month = "3",
day = "30",
doi = "10.1103/PhysRevLett.102.136808",
language = "English (US)",
volume = "102",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "13",

}

High-mobility few-layer graphene field effect transistors fabricated on epitaxial ferroelectric gate oxides. / Hong, X.; Posadas, A.; Zou, K.; Ahn, C. H.; Zhu, J.

In: Physical Review Letters, Vol. 102, No. 13, 136808, 30.03.2009.

Research output: Contribution to journalArticle

TY - JOUR

T1 - High-mobility few-layer graphene field effect transistors fabricated on epitaxial ferroelectric gate oxides

AU - Hong, X.

AU - Posadas, A.

AU - Zou, K.

AU - Ahn, C. H.

AU - Zhu, J.

PY - 2009/3/30

Y1 - 2009/3/30

N2 - The carrier mobility μ of few-layer graphene (FLG) field-effect transistors increases tenfold when the SiO2 substrate is replaced by single-crystal epitaxial Pb(Zr0.2Ti0.8)O3 (PZT). In the electron-only regime of the FLG, μ reaches 7×104cm2/Vs at 300 K for n=2.4×1012/cm2, 70% of the intrinsic limit set by longitudinal acoustic (LA) phonons; it increases to 1.4×105cm2/Vs at low temperature. The temperature-dependent resistivity ρ(T) reveals a clear signature of LA phonon scattering, yielding a deformation potential D=7.8±0.5eV.

AB - The carrier mobility μ of few-layer graphene (FLG) field-effect transistors increases tenfold when the SiO2 substrate is replaced by single-crystal epitaxial Pb(Zr0.2Ti0.8)O3 (PZT). In the electron-only regime of the FLG, μ reaches 7×104cm2/Vs at 300 K for n=2.4×1012/cm2, 70% of the intrinsic limit set by longitudinal acoustic (LA) phonons; it increases to 1.4×105cm2/Vs at low temperature. The temperature-dependent resistivity ρ(T) reveals a clear signature of LA phonon scattering, yielding a deformation potential D=7.8±0.5eV.

UR - http://www.scopus.com/inward/record.url?scp=64649085838&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=64649085838&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.102.136808

DO - 10.1103/PhysRevLett.102.136808

M3 - Article

AN - SCOPUS:64649085838

VL - 102

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 13

M1 - 136808

ER -