High rate impact to the human calcaneus: A micromechanical analysis

Rebecca A. Fielding, Reuben H. Kraft, X. G. Tan, Andrzej J. Przekwas, Christopher D. Kozuch

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

An "underbody blast" (UBB) is the detonation of a mine or improvised explosive device (IED) underneath a vehicle. In recent military conflicts, the incidence of UBBs has led to severe injuries, specifically in the lower extremities The foot and ankle complex, particularly the calcaneus bone, may sustain significant damage. Despite the prevalence of calcaneal injuries, this bone's unique properties and the progression of fracture and failure have not been adequately studied under high strain rate loading. This research discusses early efforts at creating a high-resolution computational model of the human calcaneus, with primary focus on modeling the fracture network through the complex microstructure of the bone and creating micromechanically-based constitutive models that can be used within full human body models. The ultimate goal of this ongoing research effort is to develop a micromechanics-based simulation of calcaneus fracture and fragmentation due to impact loading. With the goal of determining the basic mechanisms of stress propagation through the internal structure of the calcaneus, a two-dimensional model was employed for preliminary simulations with a plane-strain approximation. In this effort, a cadaveric calcaneus was scanned to a resolution of 55 μm using an industrial micro-computed tomography (microCT) scanner. A mid-sagittal plane slice of the scan was selected and post-processed to generate a 2D finite element mesh of the calcaneus that included marrow, trabecular bone, and cortical bone elements. The calcaneus was modeled using two-dimensional quadratic plane strain elements. A fixed boundary condition was applied to the portion of the calcaneus that, in situ, would be restrained by the talus. A displacement of 1.25 mm was applied to the heel of the calcaneus over 5 ms. In a typical result, following impact, the strain and stress are propagated throughout the cortical shell and then began to radiate into the bone into the bone along the trabeculae. Local stress concentrations can be observed in the trabecular structure in the posterior region of the bone following impact. Upon impact, cortical and trabecular bone show different stresses of 13MPa and 1 MPa, respectively, and exhibit complex high frequency responses. Observed results may offer insight into the wave interactions between the different materials comprising the calcaneus, such as impedance mismatch and refraction. Pore pressure in the marrow may be another important factor to consider in understanding stress propagation in the calcaneus.

Original languageEnglish (US)
Title of host publicationBiomedical and Biotechnology Engineering
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791846469
DOIs
StatePublished - Jan 1 2014
EventASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014 - Montreal, Canada
Duration: Nov 14 2014Nov 20 2014

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume3

Other

OtherASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014
CountryCanada
CityMontreal
Period11/14/1411/20/14

Fingerprint

Bone
Micromechanics
Pore pressure
Detonation
Constitutive models
Refraction
Frequency response
Tomography
Stress concentration
Strain rate
Boundary conditions
Microstructure

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Cite this

Fielding, R. A., Kraft, R. H., Tan, X. G., Przekwas, A. J., & Kozuch, C. D. (2014). High rate impact to the human calcaneus: A micromechanical analysis. In Biomedical and Biotechnology Engineering (ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 3). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/IMECE201438930
Fielding, Rebecca A. ; Kraft, Reuben H. ; Tan, X. G. ; Przekwas, Andrzej J. ; Kozuch, Christopher D. / High rate impact to the human calcaneus : A micromechanical analysis. Biomedical and Biotechnology Engineering. American Society of Mechanical Engineers (ASME), 2014. (ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)).
@inproceedings{7c15a8463bd1449aaa334623465080a2,
title = "High rate impact to the human calcaneus: A micromechanical analysis",
abstract = "An {"}underbody blast{"} (UBB) is the detonation of a mine or improvised explosive device (IED) underneath a vehicle. In recent military conflicts, the incidence of UBBs has led to severe injuries, specifically in the lower extremities The foot and ankle complex, particularly the calcaneus bone, may sustain significant damage. Despite the prevalence of calcaneal injuries, this bone's unique properties and the progression of fracture and failure have not been adequately studied under high strain rate loading. This research discusses early efforts at creating a high-resolution computational model of the human calcaneus, with primary focus on modeling the fracture network through the complex microstructure of the bone and creating micromechanically-based constitutive models that can be used within full human body models. The ultimate goal of this ongoing research effort is to develop a micromechanics-based simulation of calcaneus fracture and fragmentation due to impact loading. With the goal of determining the basic mechanisms of stress propagation through the internal structure of the calcaneus, a two-dimensional model was employed for preliminary simulations with a plane-strain approximation. In this effort, a cadaveric calcaneus was scanned to a resolution of 55 μm using an industrial micro-computed tomography (microCT) scanner. A mid-sagittal plane slice of the scan was selected and post-processed to generate a 2D finite element mesh of the calcaneus that included marrow, trabecular bone, and cortical bone elements. The calcaneus was modeled using two-dimensional quadratic plane strain elements. A fixed boundary condition was applied to the portion of the calcaneus that, in situ, would be restrained by the talus. A displacement of 1.25 mm was applied to the heel of the calcaneus over 5 ms. In a typical result, following impact, the strain and stress are propagated throughout the cortical shell and then began to radiate into the bone into the bone along the trabeculae. Local stress concentrations can be observed in the trabecular structure in the posterior region of the bone following impact. Upon impact, cortical and trabecular bone show different stresses of 13MPa and 1 MPa, respectively, and exhibit complex high frequency responses. Observed results may offer insight into the wave interactions between the different materials comprising the calcaneus, such as impedance mismatch and refraction. Pore pressure in the marrow may be another important factor to consider in understanding stress propagation in the calcaneus.",
author = "Fielding, {Rebecca A.} and Kraft, {Reuben H.} and Tan, {X. G.} and Przekwas, {Andrzej J.} and Kozuch, {Christopher D.}",
year = "2014",
month = "1",
day = "1",
doi = "10.1115/IMECE201438930",
language = "English (US)",
series = "ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)",
publisher = "American Society of Mechanical Engineers (ASME)",
booktitle = "Biomedical and Biotechnology Engineering",

}

Fielding, RA, Kraft, RH, Tan, XG, Przekwas, AJ & Kozuch, CD 2014, High rate impact to the human calcaneus: A micromechanical analysis. in Biomedical and Biotechnology Engineering. ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), vol. 3, American Society of Mechanical Engineers (ASME), ASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014, Montreal, Canada, 11/14/14. https://doi.org/10.1115/IMECE201438930

High rate impact to the human calcaneus : A micromechanical analysis. / Fielding, Rebecca A.; Kraft, Reuben H.; Tan, X. G.; Przekwas, Andrzej J.; Kozuch, Christopher D.

Biomedical and Biotechnology Engineering. American Society of Mechanical Engineers (ASME), 2014. (ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 3).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

TY - GEN

T1 - High rate impact to the human calcaneus

T2 - A micromechanical analysis

AU - Fielding, Rebecca A.

AU - Kraft, Reuben H.

AU - Tan, X. G.

AU - Przekwas, Andrzej J.

AU - Kozuch, Christopher D.

PY - 2014/1/1

Y1 - 2014/1/1

N2 - An "underbody blast" (UBB) is the detonation of a mine or improvised explosive device (IED) underneath a vehicle. In recent military conflicts, the incidence of UBBs has led to severe injuries, specifically in the lower extremities The foot and ankle complex, particularly the calcaneus bone, may sustain significant damage. Despite the prevalence of calcaneal injuries, this bone's unique properties and the progression of fracture and failure have not been adequately studied under high strain rate loading. This research discusses early efforts at creating a high-resolution computational model of the human calcaneus, with primary focus on modeling the fracture network through the complex microstructure of the bone and creating micromechanically-based constitutive models that can be used within full human body models. The ultimate goal of this ongoing research effort is to develop a micromechanics-based simulation of calcaneus fracture and fragmentation due to impact loading. With the goal of determining the basic mechanisms of stress propagation through the internal structure of the calcaneus, a two-dimensional model was employed for preliminary simulations with a plane-strain approximation. In this effort, a cadaveric calcaneus was scanned to a resolution of 55 μm using an industrial micro-computed tomography (microCT) scanner. A mid-sagittal plane slice of the scan was selected and post-processed to generate a 2D finite element mesh of the calcaneus that included marrow, trabecular bone, and cortical bone elements. The calcaneus was modeled using two-dimensional quadratic plane strain elements. A fixed boundary condition was applied to the portion of the calcaneus that, in situ, would be restrained by the talus. A displacement of 1.25 mm was applied to the heel of the calcaneus over 5 ms. In a typical result, following impact, the strain and stress are propagated throughout the cortical shell and then began to radiate into the bone into the bone along the trabeculae. Local stress concentrations can be observed in the trabecular structure in the posterior region of the bone following impact. Upon impact, cortical and trabecular bone show different stresses of 13MPa and 1 MPa, respectively, and exhibit complex high frequency responses. Observed results may offer insight into the wave interactions between the different materials comprising the calcaneus, such as impedance mismatch and refraction. Pore pressure in the marrow may be another important factor to consider in understanding stress propagation in the calcaneus.

AB - An "underbody blast" (UBB) is the detonation of a mine or improvised explosive device (IED) underneath a vehicle. In recent military conflicts, the incidence of UBBs has led to severe injuries, specifically in the lower extremities The foot and ankle complex, particularly the calcaneus bone, may sustain significant damage. Despite the prevalence of calcaneal injuries, this bone's unique properties and the progression of fracture and failure have not been adequately studied under high strain rate loading. This research discusses early efforts at creating a high-resolution computational model of the human calcaneus, with primary focus on modeling the fracture network through the complex microstructure of the bone and creating micromechanically-based constitutive models that can be used within full human body models. The ultimate goal of this ongoing research effort is to develop a micromechanics-based simulation of calcaneus fracture and fragmentation due to impact loading. With the goal of determining the basic mechanisms of stress propagation through the internal structure of the calcaneus, a two-dimensional model was employed for preliminary simulations with a plane-strain approximation. In this effort, a cadaveric calcaneus was scanned to a resolution of 55 μm using an industrial micro-computed tomography (microCT) scanner. A mid-sagittal plane slice of the scan was selected and post-processed to generate a 2D finite element mesh of the calcaneus that included marrow, trabecular bone, and cortical bone elements. The calcaneus was modeled using two-dimensional quadratic plane strain elements. A fixed boundary condition was applied to the portion of the calcaneus that, in situ, would be restrained by the talus. A displacement of 1.25 mm was applied to the heel of the calcaneus over 5 ms. In a typical result, following impact, the strain and stress are propagated throughout the cortical shell and then began to radiate into the bone into the bone along the trabeculae. Local stress concentrations can be observed in the trabecular structure in the posterior region of the bone following impact. Upon impact, cortical and trabecular bone show different stresses of 13MPa and 1 MPa, respectively, and exhibit complex high frequency responses. Observed results may offer insight into the wave interactions between the different materials comprising the calcaneus, such as impedance mismatch and refraction. Pore pressure in the marrow may be another important factor to consider in understanding stress propagation in the calcaneus.

UR - http://www.scopus.com/inward/record.url?scp=84926443638&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84926443638&partnerID=8YFLogxK

U2 - 10.1115/IMECE201438930

DO - 10.1115/IMECE201438930

M3 - Conference contribution

AN - SCOPUS:84926443638

T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

BT - Biomedical and Biotechnology Engineering

PB - American Society of Mechanical Engineers (ASME)

ER -

Fielding RA, Kraft RH, Tan XG, Przekwas AJ, Kozuch CD. High rate impact to the human calcaneus: A micromechanical analysis. In Biomedical and Biotechnology Engineering. American Society of Mechanical Engineers (ASME). 2014. (ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)). https://doi.org/10.1115/IMECE201438930