High Stability and Long Cycle Life of Rechargeable Sodium-Ion Battery Using Manganese Oxide Cathode: A Combined Density Functional Theory (DFT) and Experimental Study

Bidhan Pandit, Sachin R. Rondiya, Nelson Y. Dzade, Shoyebmohamad F. Shaikh, Nitish Kumar, Emad S. Goda, Abdullah A. Al-Kahtani, Rajaram S. Mane, Sanjay Mathur, Rahul R. Salunkhe

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Sodium-ion batteries (SIBs) can develop cost-effective and safe energy storage technology for substantial energy storage demands. In this work, we have developed manganese oxide (α-MnO2) nanorods for SIB applications. The crystal structure, which is crucial for high-performance energy storage, is examined systematically for the metal oxide cathode. The intercalation of sodium into the α-MnO2 matrix was studied using the theoretical density functional theory (DFT) studies. The DFT studies predict Na ions' facile diffusion kinetics through the MnO2 lattice with an attractively low diffusion barrier (0.21 eV). When employed as a cathode material for SIBs, MnO2 showed a moderate capacity (109 mAh·g-1 at C/20 current rate) and superior life cyclability (58.6% after 800 cycles) in NaPF6/EC+DMC (5% FEC) electrolyte. It shows a much higher capacity of 181 mAh·g-1 (C/20 current rate) in NaClO4/PC (5% FEC) electrolyte, though it suffers fast capacity fading (11.5% after 800 cycles). Our findings show that high crystallinity and hierarchical nanorod morphology of the MnO2 are responsible for better cycling performance in conjunction with fast and sustained charge-discharge behaviors.

Original languageEnglish (US)
Pages (from-to)11433-11441
Number of pages9
JournalACS Applied Materials and Interfaces
Volume13
Issue number9
DOIs
StatePublished - Mar 10 2021

All Science Journal Classification (ASJC) codes

  • Materials Science(all)

Cite this