Highly scalable, atomically thin WSe 2 grown via metal-organic chemical vapor deposition

Sarah M. Eichfeld, Lorraine Hossain, Yu Chuan Lin, Aleksander F. Piasecki, Benjamin Kupp, A. Glen Birdwell, Robert A. Burke, Ning Lu, Xin Peng, Jie Li, Angelica Azcatl, Stephen McDonnell, Robert M. Wallace, Moon J. Kim, Theresa S. Mayer, Joan Marie Redwing, Joshua Alexander Robinson

Research output: Contribution to journalArticle

146 Citations (Scopus)

Abstract

Tungsten diselenide (WSe 2 ) is a two-dimensional material that is of interest for next-generation electronic and optoelectronic devices due to its direct bandgap of 1.65 eV in the monolayer form and excellent transport properties. However, technologies based on this 2D material cannot be realized without a scalable synthesis process. Here, we demonstrate the first scalable synthesis of large-area, mono and few-layer WSe 2 via metal-organic chemical vapor deposition using tungsten hexacarbonyl (W(CO) 6 ) and dimethylselenium ((CH 3 ) 2 Se). In addition to being intrinsically scalable, this technique allows for the precise control of the vapor-phase chemistry, which is unobtainable using more traditional oxide vaporization routes. We show that temperature, pressure, Se:W ratio, and substrate choice have a strong impact on the ensuing atomic layer structure, with optimized conditions yielding >8 μm size domains. Raman spectroscopy, atomic force microscopy (AFM), and cross-sectional transmission electron microscopy (TEM) confirm crystalline monoto-multilayer WSe 2 is achievable. Finally, TEM and vertical current/voltage transport provide evidence that a pristine van der Waals gap exists in WSe 2 /graphene heterostructures.

Original languageEnglish (US)
Pages (from-to)2080-2087
Number of pages8
JournalACS Nano
Volume9
Issue number2
DOIs
StatePublished - Feb 24 2015

Fingerprint

Organic Chemicals
Organic chemicals
metalorganic chemical vapor deposition
Tungsten
Chemical vapor deposition
tungsten
Metals
Transmission electron microscopy
transmission electron microscopy
Graphite
synthesis
optoelectronic devices
Vaporization
Optoelectronic devices
Transport properties
Oxides
Graphene
Raman spectroscopy
Heterojunctions
Monolayers

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)

Cite this

Eichfeld, S. M., Hossain, L., Lin, Y. C., Piasecki, A. F., Kupp, B., Birdwell, A. G., ... Robinson, J. A. (2015). Highly scalable, atomically thin WSe 2 grown via metal-organic chemical vapor deposition ACS Nano, 9(2), 2080-2087. https://doi.org/10.1021/nn5073286
Eichfeld, Sarah M. ; Hossain, Lorraine ; Lin, Yu Chuan ; Piasecki, Aleksander F. ; Kupp, Benjamin ; Birdwell, A. Glen ; Burke, Robert A. ; Lu, Ning ; Peng, Xin ; Li, Jie ; Azcatl, Angelica ; McDonnell, Stephen ; Wallace, Robert M. ; Kim, Moon J. ; Mayer, Theresa S. ; Redwing, Joan Marie ; Robinson, Joshua Alexander. / Highly scalable, atomically thin WSe 2 grown via metal-organic chemical vapor deposition In: ACS Nano. 2015 ; Vol. 9, No. 2. pp. 2080-2087.
@article{4c5e0f9431684035bf47becdbdca5d78,
title = "Highly scalable, atomically thin WSe 2 grown via metal-organic chemical vapor deposition",
abstract = "Tungsten diselenide (WSe 2 ) is a two-dimensional material that is of interest for next-generation electronic and optoelectronic devices due to its direct bandgap of 1.65 eV in the monolayer form and excellent transport properties. However, technologies based on this 2D material cannot be realized without a scalable synthesis process. Here, we demonstrate the first scalable synthesis of large-area, mono and few-layer WSe 2 via metal-organic chemical vapor deposition using tungsten hexacarbonyl (W(CO) 6 ) and dimethylselenium ((CH 3 ) 2 Se). In addition to being intrinsically scalable, this technique allows for the precise control of the vapor-phase chemistry, which is unobtainable using more traditional oxide vaporization routes. We show that temperature, pressure, Se:W ratio, and substrate choice have a strong impact on the ensuing atomic layer structure, with optimized conditions yielding >8 μm size domains. Raman spectroscopy, atomic force microscopy (AFM), and cross-sectional transmission electron microscopy (TEM) confirm crystalline monoto-multilayer WSe 2 is achievable. Finally, TEM and vertical current/voltage transport provide evidence that a pristine van der Waals gap exists in WSe 2 /graphene heterostructures.",
author = "Eichfeld, {Sarah M.} and Lorraine Hossain and Lin, {Yu Chuan} and Piasecki, {Aleksander F.} and Benjamin Kupp and Birdwell, {A. Glen} and Burke, {Robert A.} and Ning Lu and Xin Peng and Jie Li and Angelica Azcatl and Stephen McDonnell and Wallace, {Robert M.} and Kim, {Moon J.} and Mayer, {Theresa S.} and Redwing, {Joan Marie} and Robinson, {Joshua Alexander}",
year = "2015",
month = "2",
day = "24",
doi = "10.1021/nn5073286",
language = "English (US)",
volume = "9",
pages = "2080--2087",
journal = "ACS Nano",
issn = "1936-0851",
publisher = "American Chemical Society",
number = "2",

}

Eichfeld, SM, Hossain, L, Lin, YC, Piasecki, AF, Kupp, B, Birdwell, AG, Burke, RA, Lu, N, Peng, X, Li, J, Azcatl, A, McDonnell, S, Wallace, RM, Kim, MJ, Mayer, TS, Redwing, JM & Robinson, JA 2015, ' Highly scalable, atomically thin WSe 2 grown via metal-organic chemical vapor deposition ', ACS Nano, vol. 9, no. 2, pp. 2080-2087. https://doi.org/10.1021/nn5073286

Highly scalable, atomically thin WSe 2 grown via metal-organic chemical vapor deposition . / Eichfeld, Sarah M.; Hossain, Lorraine; Lin, Yu Chuan; Piasecki, Aleksander F.; Kupp, Benjamin; Birdwell, A. Glen; Burke, Robert A.; Lu, Ning; Peng, Xin; Li, Jie; Azcatl, Angelica; McDonnell, Stephen; Wallace, Robert M.; Kim, Moon J.; Mayer, Theresa S.; Redwing, Joan Marie; Robinson, Joshua Alexander.

In: ACS Nano, Vol. 9, No. 2, 24.02.2015, p. 2080-2087.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Highly scalable, atomically thin WSe 2 grown via metal-organic chemical vapor deposition

AU - Eichfeld, Sarah M.

AU - Hossain, Lorraine

AU - Lin, Yu Chuan

AU - Piasecki, Aleksander F.

AU - Kupp, Benjamin

AU - Birdwell, A. Glen

AU - Burke, Robert A.

AU - Lu, Ning

AU - Peng, Xin

AU - Li, Jie

AU - Azcatl, Angelica

AU - McDonnell, Stephen

AU - Wallace, Robert M.

AU - Kim, Moon J.

AU - Mayer, Theresa S.

AU - Redwing, Joan Marie

AU - Robinson, Joshua Alexander

PY - 2015/2/24

Y1 - 2015/2/24

N2 - Tungsten diselenide (WSe 2 ) is a two-dimensional material that is of interest for next-generation electronic and optoelectronic devices due to its direct bandgap of 1.65 eV in the monolayer form and excellent transport properties. However, technologies based on this 2D material cannot be realized without a scalable synthesis process. Here, we demonstrate the first scalable synthesis of large-area, mono and few-layer WSe 2 via metal-organic chemical vapor deposition using tungsten hexacarbonyl (W(CO) 6 ) and dimethylselenium ((CH 3 ) 2 Se). In addition to being intrinsically scalable, this technique allows for the precise control of the vapor-phase chemistry, which is unobtainable using more traditional oxide vaporization routes. We show that temperature, pressure, Se:W ratio, and substrate choice have a strong impact on the ensuing atomic layer structure, with optimized conditions yielding >8 μm size domains. Raman spectroscopy, atomic force microscopy (AFM), and cross-sectional transmission electron microscopy (TEM) confirm crystalline monoto-multilayer WSe 2 is achievable. Finally, TEM and vertical current/voltage transport provide evidence that a pristine van der Waals gap exists in WSe 2 /graphene heterostructures.

AB - Tungsten diselenide (WSe 2 ) is a two-dimensional material that is of interest for next-generation electronic and optoelectronic devices due to its direct bandgap of 1.65 eV in the monolayer form and excellent transport properties. However, technologies based on this 2D material cannot be realized without a scalable synthesis process. Here, we demonstrate the first scalable synthesis of large-area, mono and few-layer WSe 2 via metal-organic chemical vapor deposition using tungsten hexacarbonyl (W(CO) 6 ) and dimethylselenium ((CH 3 ) 2 Se). In addition to being intrinsically scalable, this technique allows for the precise control of the vapor-phase chemistry, which is unobtainable using more traditional oxide vaporization routes. We show that temperature, pressure, Se:W ratio, and substrate choice have a strong impact on the ensuing atomic layer structure, with optimized conditions yielding >8 μm size domains. Raman spectroscopy, atomic force microscopy (AFM), and cross-sectional transmission electron microscopy (TEM) confirm crystalline monoto-multilayer WSe 2 is achievable. Finally, TEM and vertical current/voltage transport provide evidence that a pristine van der Waals gap exists in WSe 2 /graphene heterostructures.

UR - http://www.scopus.com/inward/record.url?scp=84923491178&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84923491178&partnerID=8YFLogxK

U2 - 10.1021/nn5073286

DO - 10.1021/nn5073286

M3 - Article

AN - SCOPUS:84923491178

VL - 9

SP - 2080

EP - 2087

JO - ACS Nano

JF - ACS Nano

SN - 1936-0851

IS - 2

ER -

Eichfeld SM, Hossain L, Lin YC, Piasecki AF, Kupp B, Birdwell AG et al. Highly scalable, atomically thin WSe 2 grown via metal-organic chemical vapor deposition ACS Nano. 2015 Feb 24;9(2):2080-2087. https://doi.org/10.1021/nn5073286