Homogénéisation d'une fonctionnelle de Ginzburg-Landau

Translated title of the contribution: Homogenization of a Ginzburg-Landau functional

Leonid Berlyand, Doina Cioranescu, Dmitry Golovaty

Research output: Contribution to journalArticle

Abstract

We consider a nonlinear homogenization problem for a Ginzburg-Landau functional with a (positive or negative) surface energy term describing a nematic liquid crystal with inclusions. Assuming that sizes and distances between inclusions are of the same order ε, we obtain a limiting functional as ε → 0. We generalize the method of mesocharacteristics to show that a corresponding homogenized problem for arbitrary, periodic or non-periodic geometries is described by an anisotropic Ginzburg-Landau functional. We give computational formulas for material characteristics of an effective medium.

Original languageFrench
Pages (from-to)87-92
Number of pages6
JournalComptes Rendus Mathematique
Volume340
Issue number1
DOIs
StatePublished - Jan 1 2005

Fingerprint

Ginzburg-Landau Functional
Homogenization
Inclusion
Surface Energy
Nematic Liquid Crystal
Limiting
Generalise
Arbitrary
Term

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cite this

Berlyand, Leonid ; Cioranescu, Doina ; Golovaty, Dmitry. / Homogénéisation d'une fonctionnelle de Ginzburg-Landau. In: Comptes Rendus Mathematique. 2005 ; Vol. 340, No. 1. pp. 87-92.
@article{7cc3b05c6b7f4f1ea958d46a1472c46f,
title = "Homog{\'e}n{\'e}isation d'une fonctionnelle de Ginzburg-Landau",
abstract = "We consider a nonlinear homogenization problem for a Ginzburg-Landau functional with a (positive or negative) surface energy term describing a nematic liquid crystal with inclusions. Assuming that sizes and distances between inclusions are of the same order ε, we obtain a limiting functional as ε → 0. We generalize the method of mesocharacteristics to show that a corresponding homogenized problem for arbitrary, periodic or non-periodic geometries is described by an anisotropic Ginzburg-Landau functional. We give computational formulas for material characteristics of an effective medium.",
author = "Leonid Berlyand and Doina Cioranescu and Dmitry Golovaty",
year = "2005",
month = "1",
day = "1",
doi = "10.1016/j.crma.2004.10.024",
language = "French",
volume = "340",
pages = "87--92",
journal = "Comptes Rendus Mathematique",
issn = "1631-073X",
publisher = "Elsevier Masson",
number = "1",

}

Homogénéisation d'une fonctionnelle de Ginzburg-Landau. / Berlyand, Leonid; Cioranescu, Doina; Golovaty, Dmitry.

In: Comptes Rendus Mathematique, Vol. 340, No. 1, 01.01.2005, p. 87-92.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Homogénéisation d'une fonctionnelle de Ginzburg-Landau

AU - Berlyand, Leonid

AU - Cioranescu, Doina

AU - Golovaty, Dmitry

PY - 2005/1/1

Y1 - 2005/1/1

N2 - We consider a nonlinear homogenization problem for a Ginzburg-Landau functional with a (positive or negative) surface energy term describing a nematic liquid crystal with inclusions. Assuming that sizes and distances between inclusions are of the same order ε, we obtain a limiting functional as ε → 0. We generalize the method of mesocharacteristics to show that a corresponding homogenized problem for arbitrary, periodic or non-periodic geometries is described by an anisotropic Ginzburg-Landau functional. We give computational formulas for material characteristics of an effective medium.

AB - We consider a nonlinear homogenization problem for a Ginzburg-Landau functional with a (positive or negative) surface energy term describing a nematic liquid crystal with inclusions. Assuming that sizes and distances between inclusions are of the same order ε, we obtain a limiting functional as ε → 0. We generalize the method of mesocharacteristics to show that a corresponding homogenized problem for arbitrary, periodic or non-periodic geometries is described by an anisotropic Ginzburg-Landau functional. We give computational formulas for material characteristics of an effective medium.

UR - http://www.scopus.com/inward/record.url?scp=11844263367&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=11844263367&partnerID=8YFLogxK

U2 - 10.1016/j.crma.2004.10.024

DO - 10.1016/j.crma.2004.10.024

M3 - Article

AN - SCOPUS:11844263367

VL - 340

SP - 87

EP - 92

JO - Comptes Rendus Mathematique

JF - Comptes Rendus Mathematique

SN - 1631-073X

IS - 1

ER -