How effective is albedo modification (solar radiation management geoengineering) in preventing sea-level rise from the Greenland Ice Sheet?

Patrick J. Applegate, Klaus Keller

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Albedo modification (AM) is sometimes characterized as a potential means of avoiding climate threshold responses, including large-scale ice sheet mass loss. Previous work has investigated the effects of AM on total sea-level rise over the present century, as well as AM's ability to reduce long-term (≫103 yr) contributions to sea-level rise from the Greenland Ice Sheet (GIS). These studies have broken new ground, but neglect important feedbacks in the GIS system, or are silent on AM's effectiveness over the short time scales that may be most relevant for decision-making (<103 yr). Here, we assess AM's ability to reduce GIS sea-level contributions over decades to centuries, using a simplified ice sheet model. We drive this model using a business-as-usual base temperature forcing scenario, as well as scenarios that reflect AM-induced temperature stabilization or temperature drawdown. Our model results suggest that (i) AM produces substantial near-term reductions in the rate of GIS-driven sea-level rise. However, (ii) sea-level rise contributions from the GIS continue after AM begins. These continued sea level rise contributions persist for decades to centuries after temperature stabilization and temperature drawdown begin, unless AM begins in the next few decades. Moreover, (iii) any regrowth of the GIS is delayed by decades or centuries after temperature drawdown begins, and is slow compared to pre-AM rates of mass loss. Combined with recent work that suggests AM would not prevent mass loss from the West Antarctic Ice Sheet, our results provide a nuanced picture of AM's possible effects on future sea-level rise.

Original languageEnglish (US)
Article number084018
JournalEnvironmental Research Letters
Volume10
Issue number8
DOIs
StatePublished - Aug 17 2015

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Environmental Science(all)
  • Public Health, Environmental and Occupational Health

Fingerprint Dive into the research topics of 'How effective is albedo modification (solar radiation management geoengineering) in preventing sea-level rise from the Greenland Ice Sheet?'. Together they form a unique fingerprint.

Cite this