H2O2-induced endothelial NO production contributes to vascular cell apoptosis and increased permeability in rat venules

Xueping Zhou, Dong Yuan, Mingxia Wang, Ping He

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

Although elevated levels of H2O2 have been implicated to play important roles in the pathogenesis of various cardiovascular diseases, the underlying mechanisms remain unclear. This study aims to examine the effect of H2O2 on endothelial nitric oxide (NO) production in intact venules, and elucidate the role and mechanisms of NO in H2O2-induced increases in microvessel permeability. Experiments were conducted on individually perfused rat mesenteric venules. Microvessel permeability was determined by measuring hydraulic conductivity (Lp), and endothelial [Ca2+]i was measured on fura-2-loaded vessels. Perfusion of H2O2 (10 μM) caused a delayed and progressively increased endothelial [Ca2+]i and Lp, a pattern different from inflammatory mediator-induced immediate and transient response. Under the same experimental conditions, measuring endothelial NO via DAF-2 and the spatial detection of cell apoptosis by fluorescent markers revealed that H2O2 induced two phases of NO production followed by caspase activation, intracellular Ca2+ accumulation, and vascular cell apoptosis. The initial NO production was correlated with increased endothelial NO synthase (eNOS) Ser1177 phosphorylation in the absence of elevated endothelial [Ca2+]i, whereas the second phase of NO depended on increased [Ca2+]i and was associated with Thr495 dephosphorylation without increased Ser1177 phosphorylation. Inhibition of NOS prevented H2O2-induced caspase activation, cell apoptosis, and increases in endothelial [Ca2+]i and Lp. Our results indicate that H2O2 at micromolar concentration is able to induce a large magnitude of NO in intact venules, causing caspase activation-mediated endothelial Ca2+ accumulation, cell apoptosis, and increases in permeability. The mechanisms revealed from intact microvessels may contribute to the pathogenesis of oxidant-related cardiovascular diseases.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume304
Issue number1
DOIs
StatePublished - Jan 1 2013

Fingerprint

Venules
Blood Vessels
Permeability
Nitric Oxide
Apoptosis
Caspases
Microvessels
Cardiovascular Diseases
Phosphorylation
Fura-2
Nitric Oxide Synthase Type III
Oxidants
Perfusion

All Science Journal Classification (ASJC) codes

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Cite this

@article{e42c8bb98f2d45629b0c0776abea5a35,
title = "H2O2-induced endothelial NO production contributes to vascular cell apoptosis and increased permeability in rat venules",
abstract = "Although elevated levels of H2O2 have been implicated to play important roles in the pathogenesis of various cardiovascular diseases, the underlying mechanisms remain unclear. This study aims to examine the effect of H2O2 on endothelial nitric oxide (NO) production in intact venules, and elucidate the role and mechanisms of NO in H2O2-induced increases in microvessel permeability. Experiments were conducted on individually perfused rat mesenteric venules. Microvessel permeability was determined by measuring hydraulic conductivity (Lp), and endothelial [Ca2+]i was measured on fura-2-loaded vessels. Perfusion of H2O2 (10 μM) caused a delayed and progressively increased endothelial [Ca2+]i and Lp, a pattern different from inflammatory mediator-induced immediate and transient response. Under the same experimental conditions, measuring endothelial NO via DAF-2 and the spatial detection of cell apoptosis by fluorescent markers revealed that H2O2 induced two phases of NO production followed by caspase activation, intracellular Ca2+ accumulation, and vascular cell apoptosis. The initial NO production was correlated with increased endothelial NO synthase (eNOS) Ser1177 phosphorylation in the absence of elevated endothelial [Ca2+]i, whereas the second phase of NO depended on increased [Ca2+]i and was associated with Thr495 dephosphorylation without increased Ser1177 phosphorylation. Inhibition of NOS prevented H2O2-induced caspase activation, cell apoptosis, and increases in endothelial [Ca2+]i and Lp. Our results indicate that H2O2 at micromolar concentration is able to induce a large magnitude of NO in intact venules, causing caspase activation-mediated endothelial Ca2+ accumulation, cell apoptosis, and increases in permeability. The mechanisms revealed from intact microvessels may contribute to the pathogenesis of oxidant-related cardiovascular diseases.",
author = "Xueping Zhou and Dong Yuan and Mingxia Wang and Ping He",
year = "2013",
month = "1",
day = "1",
doi = "10.1152/ajpheart.00300.2012",
language = "English (US)",
volume = "304",
journal = "American Journal of Physiology",
issn = "0363-6135",
publisher = "American Physiological Society",
number = "1",

}

H2O2-induced endothelial NO production contributes to vascular cell apoptosis and increased permeability in rat venules. / Zhou, Xueping; Yuan, Dong; Wang, Mingxia; He, Ping.

In: American Journal of Physiology - Heart and Circulatory Physiology, Vol. 304, No. 1, 01.01.2013.

Research output: Contribution to journalArticle

TY - JOUR

T1 - H2O2-induced endothelial NO production contributes to vascular cell apoptosis and increased permeability in rat venules

AU - Zhou, Xueping

AU - Yuan, Dong

AU - Wang, Mingxia

AU - He, Ping

PY - 2013/1/1

Y1 - 2013/1/1

N2 - Although elevated levels of H2O2 have been implicated to play important roles in the pathogenesis of various cardiovascular diseases, the underlying mechanisms remain unclear. This study aims to examine the effect of H2O2 on endothelial nitric oxide (NO) production in intact venules, and elucidate the role and mechanisms of NO in H2O2-induced increases in microvessel permeability. Experiments were conducted on individually perfused rat mesenteric venules. Microvessel permeability was determined by measuring hydraulic conductivity (Lp), and endothelial [Ca2+]i was measured on fura-2-loaded vessels. Perfusion of H2O2 (10 μM) caused a delayed and progressively increased endothelial [Ca2+]i and Lp, a pattern different from inflammatory mediator-induced immediate and transient response. Under the same experimental conditions, measuring endothelial NO via DAF-2 and the spatial detection of cell apoptosis by fluorescent markers revealed that H2O2 induced two phases of NO production followed by caspase activation, intracellular Ca2+ accumulation, and vascular cell apoptosis. The initial NO production was correlated with increased endothelial NO synthase (eNOS) Ser1177 phosphorylation in the absence of elevated endothelial [Ca2+]i, whereas the second phase of NO depended on increased [Ca2+]i and was associated with Thr495 dephosphorylation without increased Ser1177 phosphorylation. Inhibition of NOS prevented H2O2-induced caspase activation, cell apoptosis, and increases in endothelial [Ca2+]i and Lp. Our results indicate that H2O2 at micromolar concentration is able to induce a large magnitude of NO in intact venules, causing caspase activation-mediated endothelial Ca2+ accumulation, cell apoptosis, and increases in permeability. The mechanisms revealed from intact microvessels may contribute to the pathogenesis of oxidant-related cardiovascular diseases.

AB - Although elevated levels of H2O2 have been implicated to play important roles in the pathogenesis of various cardiovascular diseases, the underlying mechanisms remain unclear. This study aims to examine the effect of H2O2 on endothelial nitric oxide (NO) production in intact venules, and elucidate the role and mechanisms of NO in H2O2-induced increases in microvessel permeability. Experiments were conducted on individually perfused rat mesenteric venules. Microvessel permeability was determined by measuring hydraulic conductivity (Lp), and endothelial [Ca2+]i was measured on fura-2-loaded vessels. Perfusion of H2O2 (10 μM) caused a delayed and progressively increased endothelial [Ca2+]i and Lp, a pattern different from inflammatory mediator-induced immediate and transient response. Under the same experimental conditions, measuring endothelial NO via DAF-2 and the spatial detection of cell apoptosis by fluorescent markers revealed that H2O2 induced two phases of NO production followed by caspase activation, intracellular Ca2+ accumulation, and vascular cell apoptosis. The initial NO production was correlated with increased endothelial NO synthase (eNOS) Ser1177 phosphorylation in the absence of elevated endothelial [Ca2+]i, whereas the second phase of NO depended on increased [Ca2+]i and was associated with Thr495 dephosphorylation without increased Ser1177 phosphorylation. Inhibition of NOS prevented H2O2-induced caspase activation, cell apoptosis, and increases in endothelial [Ca2+]i and Lp. Our results indicate that H2O2 at micromolar concentration is able to induce a large magnitude of NO in intact venules, causing caspase activation-mediated endothelial Ca2+ accumulation, cell apoptosis, and increases in permeability. The mechanisms revealed from intact microvessels may contribute to the pathogenesis of oxidant-related cardiovascular diseases.

UR - http://www.scopus.com/inward/record.url?scp=84871889637&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84871889637&partnerID=8YFLogxK

U2 - 10.1152/ajpheart.00300.2012

DO - 10.1152/ajpheart.00300.2012

M3 - Article

C2 - 23086988

AN - SCOPUS:84871889637

VL - 304

JO - American Journal of Physiology

JF - American Journal of Physiology

SN - 0363-6135

IS - 1

ER -