Human mesenchymal stem cell morphology and migration on microtextured titanium

Brittany L. Banik, Thomas R. Riley, Christina J. Platt, Justin L. Brown

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs) need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that microtextured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 h, rate and directionality of migration 6-18 h post-seeding, differentiation markers at 10 days, and the long-term morphology of MSCs at 7 days, on microtextured, acid-etched titanium (endoskeleton), smooth titanium, and smooth PEEK surfaces. The results demonstrate that in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts.

Original languageEnglish (US)
Article number41
JournalFrontiers in Bioengineering and Biotechnology
Volume4
Issue numberMAY
DOIs
StatePublished - Jan 1 2016

Fingerprint

Titanium
Stem cells
Mesenchymal Stromal Cells
Cell Movement
Polyether ether ketones
Osteoblasts
Bone
Fusion reactions
Tissue
Bone and Bones
Spinal Fusion
Acids
Arthrodesis
Differentiation Antigens
Vertebrates
Research
polyetheretherketone

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Histology
  • Biomedical Engineering

Cite this

@article{0689158092f54bcbb16a4f143deeda01,
title = "Human mesenchymal stem cell morphology and migration on microtextured titanium",
abstract = "The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs) need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that microtextured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 h, rate and directionality of migration 6-18 h post-seeding, differentiation markers at 10 days, and the long-term morphology of MSCs at 7 days, on microtextured, acid-etched titanium (endoskeleton), smooth titanium, and smooth PEEK surfaces. The results demonstrate that in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts.",
author = "Banik, {Brittany L.} and Riley, {Thomas R.} and Platt, {Christina J.} and Brown, {Justin L.}",
year = "2016",
month = "1",
day = "1",
doi = "10.3389/fbioe.2016.00041",
language = "English (US)",
volume = "4",
journal = "Frontiers in Bioengineering and Biotechnology",
issn = "2296-4185",
publisher = "Frontiers Media S. A.",
number = "MAY",

}

Human mesenchymal stem cell morphology and migration on microtextured titanium. / Banik, Brittany L.; Riley, Thomas R.; Platt, Christina J.; Brown, Justin L.

In: Frontiers in Bioengineering and Biotechnology, Vol. 4, No. MAY, 41, 01.01.2016.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Human mesenchymal stem cell morphology and migration on microtextured titanium

AU - Banik, Brittany L.

AU - Riley, Thomas R.

AU - Platt, Christina J.

AU - Brown, Justin L.

PY - 2016/1/1

Y1 - 2016/1/1

N2 - The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs) need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that microtextured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 h, rate and directionality of migration 6-18 h post-seeding, differentiation markers at 10 days, and the long-term morphology of MSCs at 7 days, on microtextured, acid-etched titanium (endoskeleton), smooth titanium, and smooth PEEK surfaces. The results demonstrate that in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts.

AB - The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs) need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that microtextured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 h, rate and directionality of migration 6-18 h post-seeding, differentiation markers at 10 days, and the long-term morphology of MSCs at 7 days, on microtextured, acid-etched titanium (endoskeleton), smooth titanium, and smooth PEEK surfaces. The results demonstrate that in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts.

UR - http://www.scopus.com/inward/record.url?scp=85021217845&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85021217845&partnerID=8YFLogxK

U2 - 10.3389/fbioe.2016.00041

DO - 10.3389/fbioe.2016.00041

M3 - Article

AN - SCOPUS:85021217845

VL - 4

JO - Frontiers in Bioengineering and Biotechnology

JF - Frontiers in Bioengineering and Biotechnology

SN - 2296-4185

IS - MAY

M1 - 41

ER -