Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit

Dakotah Thompson, Linxiao Zhu, Rohith Mittapally, Seid Sadat, Zhen Xing, Patrick McArdle, M. Mumtaz Qazilbash, Pramod Reddy, Edgar Meyhofer

Research output: Contribution to journalArticlepeer-review

Abstract

Radiative heat transfer (RHT) has a central role in entropy generation and energy transfer at length scales ranging from nanometres to light years1. The blackbody limit2, as established in Max Planck’s theory of RHT, provides a convenient metric for quantifying rates of RHT because it represents the maximum possible rate of RHT between macroscopic objects in the far field—that is, at separations greater than Wien’s wavelength3. Recent experimental work has verified the feasibility of overcoming the blackbody limit in the near field4–7, but heat-transfer rates exceeding the blackbody limit have not previously been demonstrated in the far field. Here we use custom-fabricated calorimetric nanostructures with embedded thermometers to show that RHT between planar membranes with sub-wavelength dimensions can exceed the blackbody limit in the far field by more than two orders of magnitude. The heat-transfer rates that we observe are in good agreement with calculations based on fluctuational electrodynamics. These findings may be directly relevant to various fields, such as energy conversion, atmospheric sciences and astrophysics, in which RHT is important.

Original languageEnglish (US)
Pages (from-to)216-221
Number of pages6
JournalNature
Volume561
Issue number7722
DOIs
StatePublished - Sep 13 2018

All Science Journal Classification (ASJC) codes

  • General

Fingerprint Dive into the research topics of 'Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit'. Together they form a unique fingerprint.

Cite this