Hybrid Resonators and Highly Tunable Terahertz Metamaterials Enabled by Vanadium Dioxide (VO2)

Shengxiang Wang, Lei Kang, Douglas H. Werner

Research output: Contribution to journalArticlepeer-review

93 Scopus citations

Abstract

Hybrid metamaterials that exhibit reconfigurable responses under external stimulus, such as electric fields and light radiation, have only recently been demonstrated by combining active media with patterned metallic structures. Nevertheless, hybrid terahertz (THz) metamaterials whose spectral performance can be dynamically tuned over a large scale remain rare. Compared with most active media (for instance, silicon) that provide limited activity, vanadium dioxide (VO2), which exhibits an insulator-to-metal transition, has been recently explored to facilitate dynamically tunable metamaterials. More importantly, the phase transition yields a three orders of magnitude increase in THz electrical conductivity, which suggests the potential for creating VO2 based hybrid resonators that operate at THz frequencies. Here, we show that an integration of VO2 structures and conventional metallic resonating components can enable a class of highly tunable THz metamaterials. Considering the widely studied phase-transition dynamics in VO2, the proposed hybrid metamaterials are capable of offering ultrafast modulation of THz radiation.

Original languageEnglish (US)
Article number4326
JournalScientific reports
Volume7
Issue number1
DOIs
StatePublished - Dec 1 2017

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Hybrid Resonators and Highly Tunable Terahertz Metamaterials Enabled by Vanadium Dioxide (VO<sub>2</sub>)'. Together they form a unique fingerprint.

Cite this