Hydrodynamical study of micropolar fluid in a porous-walled channel: Application to flat plate dialyzer

Dianchen Lu, Muhammad Kahshan, A. M. Siddiqui

Research output: Contribution to journalArticle

Abstract

This article investigates the two-dimensional creeping flow of a non-Newtonian micropolar fluid in a small width permeable channel. Fluid is absorbed through permeable walls at a variable rate. This situation arises in filtration and mass transfer phenomena in industrial and engineering processes. The exact solution of the equations of motion is obtained. Graphs of the velocity profiles and pressure drop reveal the significant impact of the non-Newtonian nature of the micropolar fluid on the flow. The obtained solutions are used to discuss the hydrodynamical aspects of the physiological phenomenon of blood filtration in an artificial kidney, the flat plate dialyzer (FPD). Expressions for finding the ultrafiltration rate and mean pressure drop in an FPD are derived. Ultrafiltration rate and the mean pressure difference in an FPD are computed using derived expressions. A comparison of these with the existing empirical and experimental results shows a good agreement. For certain values of parameters, the derived form of the flow rate reveals that the axial flow rate in an FPD decays exponentially along the membrane length. This is a well-established and admitted result used by several researchers for studying the hydrodynamics of blood flow in renal tubules of kidneys. It is concluded that the presented model can be used to study the hydrodynamical aspects of blood flow in an FPD.

Original languageEnglish (US)
Article number541
JournalSymmetry
Volume11
Issue number4
DOIs
StatePublished - Apr 1 2019

Fingerprint

micropolar fluids
Micropolar Fluid
Flat Plate
flat plates
Blood
Ultrafiltration
Pressure drop
Fluids
Flow rate
Pressure Drop
Kidney
kidneys
blood flow
Blood Flow
pressure drop
Axial flow
Flow Rate
Filtration
flow velocity
Equations of motion

All Science Journal Classification (ASJC) codes

  • Computer Science (miscellaneous)
  • Chemistry (miscellaneous)
  • Mathematics(all)
  • Physics and Astronomy (miscellaneous)

Cite this

@article{afd89f2aeb674957b27e80b27f7275d2,
title = "Hydrodynamical study of micropolar fluid in a porous-walled channel: Application to flat plate dialyzer",
abstract = "This article investigates the two-dimensional creeping flow of a non-Newtonian micropolar fluid in a small width permeable channel. Fluid is absorbed through permeable walls at a variable rate. This situation arises in filtration and mass transfer phenomena in industrial and engineering processes. The exact solution of the equations of motion is obtained. Graphs of the velocity profiles and pressure drop reveal the significant impact of the non-Newtonian nature of the micropolar fluid on the flow. The obtained solutions are used to discuss the hydrodynamical aspects of the physiological phenomenon of blood filtration in an artificial kidney, the flat plate dialyzer (FPD). Expressions for finding the ultrafiltration rate and mean pressure drop in an FPD are derived. Ultrafiltration rate and the mean pressure difference in an FPD are computed using derived expressions. A comparison of these with the existing empirical and experimental results shows a good agreement. For certain values of parameters, the derived form of the flow rate reveals that the axial flow rate in an FPD decays exponentially along the membrane length. This is a well-established and admitted result used by several researchers for studying the hydrodynamics of blood flow in renal tubules of kidneys. It is concluded that the presented model can be used to study the hydrodynamical aspects of blood flow in an FPD.",
author = "Dianchen Lu and Muhammad Kahshan and Siddiqui, {A. M.}",
year = "2019",
month = "4",
day = "1",
doi = "10.3390/sym11040541",
language = "English (US)",
volume = "11",
journal = "Symmetry",
issn = "2073-8994",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "4",

}

Hydrodynamical study of micropolar fluid in a porous-walled channel : Application to flat plate dialyzer. / Lu, Dianchen; Kahshan, Muhammad; Siddiqui, A. M.

In: Symmetry, Vol. 11, No. 4, 541, 01.04.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Hydrodynamical study of micropolar fluid in a porous-walled channel

T2 - Application to flat plate dialyzer

AU - Lu, Dianchen

AU - Kahshan, Muhammad

AU - Siddiqui, A. M.

PY - 2019/4/1

Y1 - 2019/4/1

N2 - This article investigates the two-dimensional creeping flow of a non-Newtonian micropolar fluid in a small width permeable channel. Fluid is absorbed through permeable walls at a variable rate. This situation arises in filtration and mass transfer phenomena in industrial and engineering processes. The exact solution of the equations of motion is obtained. Graphs of the velocity profiles and pressure drop reveal the significant impact of the non-Newtonian nature of the micropolar fluid on the flow. The obtained solutions are used to discuss the hydrodynamical aspects of the physiological phenomenon of blood filtration in an artificial kidney, the flat plate dialyzer (FPD). Expressions for finding the ultrafiltration rate and mean pressure drop in an FPD are derived. Ultrafiltration rate and the mean pressure difference in an FPD are computed using derived expressions. A comparison of these with the existing empirical and experimental results shows a good agreement. For certain values of parameters, the derived form of the flow rate reveals that the axial flow rate in an FPD decays exponentially along the membrane length. This is a well-established and admitted result used by several researchers for studying the hydrodynamics of blood flow in renal tubules of kidneys. It is concluded that the presented model can be used to study the hydrodynamical aspects of blood flow in an FPD.

AB - This article investigates the two-dimensional creeping flow of a non-Newtonian micropolar fluid in a small width permeable channel. Fluid is absorbed through permeable walls at a variable rate. This situation arises in filtration and mass transfer phenomena in industrial and engineering processes. The exact solution of the equations of motion is obtained. Graphs of the velocity profiles and pressure drop reveal the significant impact of the non-Newtonian nature of the micropolar fluid on the flow. The obtained solutions are used to discuss the hydrodynamical aspects of the physiological phenomenon of blood filtration in an artificial kidney, the flat plate dialyzer (FPD). Expressions for finding the ultrafiltration rate and mean pressure drop in an FPD are derived. Ultrafiltration rate and the mean pressure difference in an FPD are computed using derived expressions. A comparison of these with the existing empirical and experimental results shows a good agreement. For certain values of parameters, the derived form of the flow rate reveals that the axial flow rate in an FPD decays exponentially along the membrane length. This is a well-established and admitted result used by several researchers for studying the hydrodynamics of blood flow in renal tubules of kidneys. It is concluded that the presented model can be used to study the hydrodynamical aspects of blood flow in an FPD.

UR - http://www.scopus.com/inward/record.url?scp=85065501654&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85065501654&partnerID=8YFLogxK

U2 - 10.3390/sym11040541

DO - 10.3390/sym11040541

M3 - Article

AN - SCOPUS:85065501654

VL - 11

JO - Symmetry

JF - Symmetry

SN - 2073-8994

IS - 4

M1 - 541

ER -